Statistical inference of partially linear regression models with heteroscedastic errors

The authors study a heteroscedastic partially linear regression model and develop an inferential procedure for it. This includes a test of heteroscedasticity, a two-step estimator of the heteroscedastic variance function, semiparametric generalized least-squares estimators of the parametric and nonparametric components of the model, and a bootstrap goodness of fit test to see whether the nonparametric component can be parametrized.