Study on the effect of IrO2/TiO2 catalyst composition coated on porous transport layer on the performance and durability of polymer electrolyte membrane water electrolysis

[1]  Kohei Ito,et al.  Ru-core Ir-shell electrocatalysts deposited on a surface-modified Ti-based porous transport layer for polymer electrolyte membrane water electrolysis , 2023, International Journal of Hydrogen Energy.

[2]  K. Bouzek,et al.  Introducing titanium hydride on porous transport layer for more energy efficient water electrolysis with proton exchange membrane , 2023, Journal of Power Sources.

[3]  Guogang Yang,et al.  Effect of Porous Transport Layer Parameters on the Proton Exchange Membrane Electrolyzer Performance , 2023, Chemical Physics Letters.

[4]  Liu Zongqi,et al.  Wettability and wettability modification methods of porous transport layer in polymer electrolyte membrane electrolysis cells (PEMEC): A review , 2023, International Journal of Hydrogen Energy.

[5]  Jason Lee,et al.  Titanium Porous-Transport Layers for Pem Water Electrolysis Prepared by Tape Casting , 2023, SSRN Electronic Journal.

[6]  Dukjoon Kim,et al.  Ether-free polymer based bipolar electrolyte membranes without an interlayer catalyst for water electrolysis with durability at a high current density , 2023, Chemical Engineering Journal.

[7]  D. Jeon,et al.  Oxygen bubble transport in a porous transport layer of polymer electrolyte water electrolyzer , 2023, Journal of Power Sources.

[8]  Hyun-Seok Cho,et al.  Influence of IrO2/TiO2 coated titanium porous transport layer on the performance of PEM water electrolysis , 2022, Journal of Power Sources.

[9]  Hyunwoong Park,et al.  Electrocatalytic activity of nanoparticulate TiO2 coated onto Ta-doped IrO2/Ti substrates: Effects of the TiO2 overlayer thickness , 2021 .

[10]  Chang-Hee Kim,et al.  A review of the porous transport layer in polymer electrolyte membrane water electrolysis , 2021, International Journal of Energy Research.

[11]  H. Lv,et al.  Defect engineering assisted support effect:IrO2/N defective g-C3N4 composite as highly efficient anode catalyst in PEM water electrolysis , 2021 .

[12]  Y. Kubota,et al.  Efficient overall water splitting in acid with anisotropic metal nanosheets , 2021, Nature Communications.

[13]  R. Schlögl,et al.  Degradation study of a proton exchange membrane water electrolyzer under dynamic operation conditions , 2020 .

[14]  S. Thiele,et al.  IrO2 coated TiO2 core-shell microparticles advance performance of low loading proton exchange membrane water electrolyzers , 2020 .

[15]  L. Gubler,et al.  Understanding the effects of material properties and operating conditions on component aging in polymer electrolyte water electrolyzers , 2020 .

[16]  S. Alia,et al.  Electrolyzer Durability at Low Catalyst Loading and with Dynamic Operation , 2019, Journal of The Electrochemical Society.

[17]  S. Alves,et al.  Advanced Surface Treatments on Titanium and Titanium Alloys Focused on Electrochemical and Physical Technologies for Biomedical Applications , 2019, Biomaterial-supported Tissue Reconstruction or Regeneration.

[18]  M. Jaroniec,et al.  Charge-Redistribution-Enhanced Nanocrystalline Ru@IrOx Electrocatalysts for Oxygen Evolution in Acidic Media , 2019, Chem.

[19]  B. Shabani,et al.  Review of gas diffusion layer for proton exchange membrane-based technologies with a focus on unitised regenerative fuel cells , 2019, International Journal of Hydrogen Energy.

[20]  N. Briguglio,et al.  Electrochemical Impedance Spectroscopy as a Diagnostic Tool in Polymer Electrolyte Membrane Electrolysis , 2018, Materials.

[21]  B. Shabani,et al.  Gas diffusion layer modifications and treatments for improving the performance of proton exchange membrane fuel cells and electrolysers: A review , 2017 .

[22]  Qi Feng,et al.  A review of proton exchange membrane water electrolysis on degradation mechanisms and mitigation strategies , 2017 .

[23]  Brant A. Peppley,et al.  Metal Carbide and Oxide Supports for Iridium-Based Oxygen Evolution Reaction Electrocatalysts for Polymer-Electrolyte-Membrane Water Electrolysis , 2017 .

[24]  Bing Li,et al.  Investigation of V-doped TiO2 as an anodic catalyst support for SPE water electrolysis , 2017 .

[25]  Uwe Reimer,et al.  Polymer electrolyte membrane water electrolysis: Restraining degradation in the presence of fluctuating power , 2017 .

[26]  M. Povia,et al.  IrO2-TiO2: A High-Surface-Area, Active, and Stable Electrocatalyst for the Oxygen Evolution Reaction , 2017 .

[27]  Uwe Reimer,et al.  An analysis of degradation phenomena in polymer electrolyte membrane water electrolysis , 2016 .

[28]  Y. Zhang,et al.  Optimum design of polymer electrolyte membrane fuel cell with graded porosity gas diffusion layer , 2016 .

[29]  Hubert A. Gasteiger,et al.  Influence of Ionomer Content in IrO 2 /TiO 2 Electrodes on PEM Water Electrolyser Performance , 2016 .

[30]  Ryan R. Dehoff,et al.  Additive manufacturing of liquid/gas diffusion layers for low-cost and high-efficiency hydrogen production , 2016 .

[31]  S. Sotiropoulos,et al.  Electrochemical impedance studies of IrO2 catalysts for oxygen evolution , 2015 .

[32]  Yanyan Du,et al.  A study on the performance of IrO2–Ta2O5 coated anodes with surface treated Ti substrates , 2015 .

[33]  Nilofar Asim,et al.  A review of unitized regenerative fuel cell stack: Material, design and research achievements , 2014 .

[34]  S. Mishra,et al.  Quantitative studies on the size induced anatase to rutile phase transformation in TiO2–SiO2 binary oxides during heat treatments , 2014 .

[35]  M. Ishida,et al.  Effect of through-plane polytetrafluoroethylene distribution in a gas diffusion layer on a polymer electrolyte unitized reversible fuel cell , 2013 .

[36]  D. Stolten,et al.  A comprehensive review on PEM water electrolysis , 2013 .

[37]  M. D. Mat,et al.  Effects of operating parameters on the performance of a high‐pressure proton exchange membrane electrolyzer , 2013 .

[38]  B. Yi,et al.  Zeolite-templated IrxRu1-xO2 electrocatalysts for oxygen evolution reaction in solid polymer electrolyte water electrolyzers , 2012 .

[39]  V. Radhakrishnan,et al.  Enhanced mechanical and electrochemical durability of multistage PTFE treated gas diffusion layers for proton exchange membrane fuel cells , 2012 .

[40]  M. Yousefpour,et al.  Electrodeposition of TiO2-RuO2-IrO2 coating on titanium substrate. , 2012, Superlattices and microstructures.

[41]  D. Wilkinson,et al.  Application of water barrier layers in a proton exchange membrane fuel cell for improved water manag , 2011 .

[42]  L. Flandin,et al.  Effects of contaminant on thermal properties in perfluorinated sulfonic acid membranes , 2010 .

[43]  B. Popov,et al.  High-durability titanium bipolar plate modified by electrochemical deposition of platinum for unitized regenerative fuel cell (URFC) , 2010 .

[44]  Jinsheng Xiao,et al.  Gas diffusion through differently structured gas diffusion layers of PEM fuel cells , 2007 .

[45]  Allen M. Hermann,et al.  Bipolar plates for PEM fuel cells: A review , 2005 .

[46]  John A. Turner,et al.  Thermally nitrided stainless steels for polymer electrolyte membrane fuel cell bipolar plates: Part 1: Model Ni–50Cr and austenitic 349™ alloys , 2004 .

[47]  J. Kristóf,et al.  Emission FTIR studies on the formation mechanism of IrO2/TiO2 based coatings , 1994 .

[48]  C. Bowen,et al.  The Thermodynamics of Aqueous Water Electrolysis , 1980 .

[49]  R. Hanke-Rauschenbach,et al.  Local Current Density and Electrochemical Impedance Measurements within 50 cm Single-Channel PEM Electrolysis Cell , 2018 .

[50]  B. Yi,et al.  IrO2 coated TiO2 nanopore arrays electrode for SPE HBr electrolysis , 2013 .

[51]  I. Dincer Green methods for hydrogen production , 2012 .

[52]  Yasuo Hasegawa,et al.  Influence of properties of gas diffusion layers on the performance of polymer electrolyte-based unit , 2011 .

[53]  S. Trasatti,et al.  Oxygen evolution in acid solution on IrO2 + TiO2 ceramic films. A study by impedance, voltammetry and SEM , 1997 .