Periodic solutions for a class of first order super-quadratic Hamiltonian system

Abstract Based on a developed local linking theorem, by replacing the Palais–Smale condition with a Cerami one, we consider the following unbounded Hamiltonian system: (0.1) { ∂ t u − Δ x u + V ( x ) u = H v ( t , x , u , v ) , − ∂ t v − Δ x v + V ( x ) v = H u ( t , x , u , v ) for  ( t , x ) ∈ R × Ω , where Ω ⊂ R N , N ⩾ 1 , is a bounded domain with smooth boundary ∂Ω. The nonlinearities are assumed to be super-quadratic at the infinite, which are different from those investigated previously.

[1]  A. Ambrosetti,et al.  Multiplicité des orbites homoclines pour des systèmes conservatifs , 1992 .

[2]  J. Mawhin,et al.  Critical Point Theory and Hamiltonian Systems , 1989 .

[3]  Yanheng Ding,et al.  Homoclinic solutions of an infinite-dimensional Hamiltonian system , 2002 .

[4]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[5]  Ivar Ekeland,et al.  A variational approach to homolinic orbits in Hamiltonian systems , 1990 .

[6]  Periodic solutions of a class of dynamical systems of second order , 1991 .

[7]  Kazunaga Tanaka Homoclinic orbits in a first order superquadratic Hamiltonian system , 1991 .

[8]  Haim Brezis,et al.  Characterizations of the ranges of some nonlinear operators and applications to boundary value problems , 1978 .

[9]  Anmin Mao,et al.  Periodic solutions for a class of non-autonomous Hamiltonian systems , 2005 .

[10]  Michel Willem,et al.  Applications of local linking to critical point theory , 1995 .

[11]  Yiming Long The Minimal Period Problem of Periodic Solutions for Autonomous Superquadratic Second Order Hamiltonian Systems , 1994 .

[12]  V. Barbu Periodic solutions to unbounded Hamiltonian system , 1995 .

[13]  A. Szulkin,et al.  Periodic Solutions for a Class of Nonautonomous Hamiltonian Systems , 1994 .

[14]  P. Rabinowitz Minimax methods in critical point theory with applications to differential equations , 1986 .

[15]  P. Rabinowitz,et al.  Dual variational methods in critical point theory and applications , 1973 .

[16]  Y. Long Periodic solutions of superquadratic Hamiltonian systems with bounded forcing terms , 1990 .

[17]  Paul H. Rabinowitz,et al.  Periodic solutions of hamiltonian systems , 1978 .

[18]  P. Clément,et al.  On the non-existence of homoclinic orbits for a class of infinite dimensional Hamiltonian systems , 1997 .

[19]  Xiangjin Xu,et al.  Periodic solutions for a class of nonautonomous Hamiltonian systems , 2000 .

[20]  Paulo Cesar Carrião,et al.  Existence of homoclinic solutions for a class of time-dependent Hamiltonian systems , 1999 .

[21]  Vittorio Coti Zelati,et al.  Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials , 1991 .