Periodic solutions for a class of first order super-quadratic Hamiltonian system
暂无分享,去创建一个
Yanheng Ding | Anmin Mao | Shixia Luan | Yanheng Ding | S. Luan | Anmin Mao
[1] A. Ambrosetti,et al. Multiplicité des orbites homoclines pour des systèmes conservatifs , 1992 .
[2] J. Mawhin,et al. Critical Point Theory and Hamiltonian Systems , 1989 .
[3] Yanheng Ding,et al. Homoclinic solutions of an infinite-dimensional Hamiltonian system , 2002 .
[4] W. D. Evans,et al. PARTIAL DIFFERENTIAL EQUATIONS , 1941 .
[5] Ivar Ekeland,et al. A variational approach to homolinic orbits in Hamiltonian systems , 1990 .
[6] Periodic solutions of a class of dynamical systems of second order , 1991 .
[7] Kazunaga Tanaka. Homoclinic orbits in a first order superquadratic Hamiltonian system , 1991 .
[8] Haim Brezis,et al. Characterizations of the ranges of some nonlinear operators and applications to boundary value problems , 1978 .
[9] Anmin Mao,et al. Periodic solutions for a class of non-autonomous Hamiltonian systems , 2005 .
[10] Michel Willem,et al. Applications of local linking to critical point theory , 1995 .
[11] Yiming Long. The Minimal Period Problem of Periodic Solutions for Autonomous Superquadratic Second Order Hamiltonian Systems , 1994 .
[12] V. Barbu. Periodic solutions to unbounded Hamiltonian system , 1995 .
[13] A. Szulkin,et al. Periodic Solutions for a Class of Nonautonomous Hamiltonian Systems , 1994 .
[14] P. Rabinowitz. Minimax methods in critical point theory with applications to differential equations , 1986 .
[15] P. Rabinowitz,et al. Dual variational methods in critical point theory and applications , 1973 .
[16] Y. Long. Periodic solutions of superquadratic Hamiltonian systems with bounded forcing terms , 1990 .
[17] Paul H. Rabinowitz,et al. Periodic solutions of hamiltonian systems , 1978 .
[18] P. Clément,et al. On the non-existence of homoclinic orbits for a class of infinite dimensional Hamiltonian systems , 1997 .
[19] Xiangjin Xu,et al. Periodic solutions for a class of nonautonomous Hamiltonian systems , 2000 .
[20] Paulo Cesar Carrião,et al. Existence of homoclinic solutions for a class of time-dependent Hamiltonian systems , 1999 .
[21] Vittorio Coti Zelati,et al. Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials , 1991 .