Circular and linear dichroism of proteins.

Circular dichroism (CD) is an important technique in the structural characterisation of proteins, and especially for secondary structure determination. The CD of proteins can be calculated from first principles using the so-called matrix method, with an accuracy which is almost quantitative for helical proteins. Thus, for proteins of unknown structure, CD calculations and experimental data can be used in conjunction to aid structure analysis. Linear dichroism (LD) can be calculated using analogous methodology and has been used to establish the relative orientations of subunits in proteins and protein orientation in an environment such as a membrane. However, simple analysis of LD data is not possible, due to overlapping transitions. So coupling the calculations and experiment is an important strategy. In this paper, the use of LD for the determination of protein orientation and how these data can be interpreted with the aid of calculations, are discussed. We review methods for the calculation of CD spectra, focusing on semiempirical and ab initio parameter sets used in the matrix method. Lastly, a new web interface for online CD and LD calculation is presented.

[1]  C. Dobson,et al.  Time-resolved biophysical methods in the study of protein folding. , 1996, Current opinion in structural biology.

[2]  Narasimha Sreerama,et al.  Computation and Analysis of Protein Circular Dichroism Spectra , 2004, Numerical Computer Methods, Part D.

[3]  J. Hirst,et al.  Ab Initio Study of the Effect of Solvation on the Electronic Spectra of Formamide and N-Methylacetamide , 1998 .

[4]  H. Luecke,et al.  X-ray crystallographic analysis of lipid-protein interactions in the bacteriorhodopsin purple membrane. , 2003, Annual review of biophysics and biomolecular structure.

[5]  R. Carraway,et al.  Singlet-Singlet and Triplet-Triplet Energy Transfer in Bichromophoric Peptides , 1999 .

[6]  Laurence D. Barron,et al.  Molecular Light Scattering and Optical Activity: Second Edition, revised and enlarged , 1983 .

[7]  N. Sreerama,et al.  A self-consistent method for the analysis of protein secondary structure from circular dichroism. , 1993, Analytical biochemistry.

[8]  W C Johnson,et al.  Protein secondary structure and circular dichroism: A practical guide , 1990, Proteins.

[9]  A. Mallock IV. Determination of the viscosity of water , 1889, Proceedings of the Royal Society of London.

[10]  J. Simons,et al.  Molecular conformation in the gas phase and in solution , 2002 .

[11]  Jonathan D. Hirst,et al.  Charge-transfer transitions in protein circular dichroism spectra , 2004 .

[12]  M. A. Andrade,et al.  Evaluation of secondary structure of proteins from UV circular dichroism spectra using an unsupervised learning neural network. , 1993, Protein engineering.

[13]  N. Sreerama,et al.  Estimation of the number of α‐helical and β‐strand segments in proteins using circular dichroism spectroscopy , 2008, Protein science : a publication of the Protein Society.

[14]  Howard DeVoe,et al.  Optical Properties of Molecular Aggregates. I. Classical Model of Electronic Absorption and Refraction , 1964 .

[15]  M. Schreiber,et al.  Ab initio (CASPT2) excited state calculations, including circular dichroism, of helically twisted cyanine dyes. , 2001, Chirality.

[16]  W C Johnson,et al.  Analysis of protein circular dichroism spectra for secondary structure using a simple matrix multiplication. , 1986, Analytical biochemistry.

[17]  Jonathan D. Hirst,et al.  Theoretical Studies toward Quantitative Protein Circular Dichroism Calculations , 1999 .

[18]  P. Takacs,et al.  Versatile spectrometer for experiments using synchrotron radiation at wave-lengths greater than 100 nm , 1980 .

[19]  N. Sreerama,et al.  Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. , 2000, Analytical biochemistry.

[20]  I. V. van Stokkum,et al.  Estimation of protein secondary structure and error analysis from circular dichroism spectra. , 1990, Analytical biochemistry.

[21]  Markus P. Fülscher,et al.  Solvent Effects on Electronic Spectra Studied by Multiconfigurational Perturbation Theory , 1997 .

[22]  N. Sreerama,et al.  Comment on “Improving protein circular dichroism calculations in the far-ultraviolet through reparametrizing the amide chromophore” [J. Chem. Phys. 109, 782 (1998)] , 1999 .

[23]  A. Doig,et al.  Stabilizing interactions between aromatic and basic side chains in alpha-helical peptides and proteins. Tyrosine effects on helix circular dichroism. , 2002, Journal of the American Chemical Society.

[24]  B. Nordén,et al.  Flow oriented linear dichroism to probe protein orientation in membrane environments , 2002 .

[25]  J. Tanaka,et al.  Polarized Absorption Spectra of Crystals of Indole and Its Related Compounds , 1972 .

[26]  M. Diem,et al.  Optical activity in vibrational transitions: vibrational circular dichroism and Raman optical activity , 1979 .

[27]  J. Hirst,et al.  Theoretical studies of time-resolved spectroscopy of protein folding. , 2003, Faraday discussions.

[28]  Lee Whitmore,et al.  DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data , 2004, Nucleic Acids Res..

[29]  P. Doty,et al.  Optical rotation and the conformation of polypeptides and proteins. , 1961, Advances in protein chemistry.

[30]  A. Rodger,et al.  FtsZ Fiber Bundling Is Triggered by a Conformational Change in Bound GTP* , 2004, Journal of Biological Chemistry.

[31]  N. C. Price,et al.  How to study proteins by circular dichroism. , 2005, Biochimica et biophysica acta.

[32]  J. Kirkwood,et al.  THE OPTICAL ROTATORY POWER OF HELICAL MOLECULES. , 1956, Proceedings of the National Academy of Sciences of the United States of America.

[33]  A. Rodger,et al.  Linear dichroism of biomolecules: which way is up? , 2004, Current opinion in structural biology.

[34]  R. Weinkauf,et al.  ELEMENTARY PROCESSES IN PEPTIDES : ELECTRON MOBILITY AND DISSOCIATION IN PEPTIDE CATIONS IN THE GAS PHASE , 1995 .

[35]  J. Applequist,et al.  Theoretical π-π* absorption and circular dichroic spectra of cyclic dipeptides , 2009 .

[36]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[37]  J. Hirst,et al.  Short Hydrogen Bonds, Circular Dichroism, and Over-Estimates of Peptide Helicity We thank BBSRC for financial support (grant 42/B1524). , 2001, Angewandte Chemie.

[38]  P. Doty,et al.  THE ULTRAVIOLET CIRCULAR DICHROISM OF POLYPEPTIDES. , 1965, Journal of the American Chemical Society.

[39]  Melvin B. Robin,et al.  Higher excited states of polyatomic molecules , 1974 .

[40]  R. W. Janes,et al.  Synchrotron radiation circular dichroism spectroscopy of proteins: secondary structure, fold recognition and structural genomics. , 2001, Current opinion in chemical biology.

[41]  B. Nordén,et al.  Chromophore Orientation in Liposome Membranes Probed with Flow Dichroism , 1998 .

[42]  J. Brahms,et al.  Determination of protein secondary structure in solution by vacuum ultraviolet circular dichroism. , 1980, Journal of molecular biology.

[43]  Stefan Grimme,et al.  Circular Dichroism of Helicenes Investigated by Time-Dependent Density Functional Theory , 2000 .

[44]  W. Moffitt,et al.  THE OPTICAL ROTATORY DISPERSION OF SIMPLE POLYPEPTIDES. I. , 1956, Proceedings of the National Academy of Sciences of the United States of America.

[45]  T. R. Faulkner,et al.  Infrared circular dichroism of carbon-hydrogen and carbon-deuterium stretching modes. Observations , 1974 .

[46]  Robert W. Janes,et al.  Bioinformatics analyses of circular dichroism protein reference databases , 2005, Bioinform..

[47]  A. Wada Dichroic Spectra of Biopolymers Oriented by Flow , 1972 .

[48]  J. Kirkwood On the Theory of Optical Rotatory Power , 1937 .

[49]  N. Berova,et al.  Circular Dichroism: Principles and Applications , 1994 .

[50]  P. Wipf,et al.  Determining absolute configuration in flexible molecules: a case study. , 2001, Journal of the American Chemical Society.

[51]  W. Moffitt Optical Rotatory Dispersion of Helical Polymers , 1956 .

[52]  D. Oesterhelt,et al.  Reconstitution of bacteriorhodopsin , 1974, FEBS letters.

[53]  G. Snatzke,et al.  Circular Dichroism and Optical Rotatory Dispersion — Principles and Application to the Investigation of the Stereochemistry of Natural Products† , 1968 .

[54]  M. Hoffmann,et al.  Dipole interaction model predicted pi-pi* circular dichroism of cyclo(L-Pro)3 using structures created by semi-empirical, ab initio, and molecular mechanics methods. , 2008, The journal of peptide research : official journal of the American Peptide Society.

[55]  I. Tinoco,et al.  Optical Rotation of Oriented Helices. III. Calculation of the Rotatory Dispersion and Circular Dichroism of the Alpha‐ and 310‐Helix , 1967 .

[56]  J. Hirst,et al.  Hydrogen bonding in protein circular dichroism calculations , 2000 .

[57]  W C Johnson,et al.  Variable selection method improves the prediction of protein secondary structure from circular dichroism spectra. , 1987, Analytical biochemistry.

[58]  Vibrational Circular Dichroism , 1981 .

[59]  P. Booth,et al.  The activation energy for insertion of transmembrane alpha-helices is dependent on membrane composition. , 2002, Journal of molecular biology.

[60]  Mark L. Olson,et al.  A normal mode treatment of optical properties of a classical coupled dipole oscillator system with Lorentzian band shapes , 1979 .

[61]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[62]  Aleksandr Petrovich Demchenko,et al.  Ultraviolet Spectroscopy of Proteins , 1986, 1987.

[63]  D. Rogers,et al.  Ab Initio Study of Aromatic Side Chains of Amino Acids in Gas Phase and Solution , 2003 .

[64]  F. Oosawa,et al.  ULTRAVIOLET DICHROISM OF F-ACTIN ORIENTED BY FLOW. , 1963, Journal of molecular biology.

[65]  Y H Chen,et al.  Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion. , 1972, Biochemistry.

[66]  P. Bayley The analysis of circular dichroism of biomolecules , 1973 .

[67]  R. Woody Improved calculation of the n-pi rotational strength in polypeptides. , 1968, The Journal of chemical physics.

[68]  Mark T. Oakley,et al.  First-principles calculations of protein circular dichroism in the far-ultraviolet and beyond. , 2006, Chirality.

[69]  J T Yang,et al.  Calculation of protein conformation from circular dichroism. , 1986, Methods in enzymology.

[70]  G. Fasman Circular Dichroism and the Conformational Analysis of Biomolecules , 1996, Springer US.

[71]  John R. Platt,et al.  Classification of Spectra of Cata-Condensed Hydrocarbons , 1949 .

[72]  K. Gekko,et al.  Improved estimation of the secondary structures of proteins by vacuum-ultraviolet circular dichroism spectroscopy. , 2005, Journal of biochemistry.

[73]  B. Wallace,et al.  Synchrotron radiation circular dichroism spectroscopy of proteins and applications in structural and functional genomics. , 2006, Chemical Society reviews.

[74]  P. Stephens,et al.  Vibrational circular dichroism of 2,2,2-trifluoro-1-phenylethanol , 1975 .

[75]  I. Tinoco Theoretical Aspects of Optical Activity Part Two: Polymers , 2007 .

[76]  S. Provencher,et al.  Estimation of globular protein secondary structure from circular dichroism. , 1981, Biochemistry.

[77]  Katsunori Tanaka,et al.  Three challenges toward the assignment of absolute configuration of gymnocin-B. , 2005, Journal of the American Chemical Society.

[78]  G. Karlstroem A new approach to the modeling of dielectric media effects in ab initio quantum chemical calculations , 1988 .

[79]  L. Rosenfeld Quantenmechanische Theorie der natürlichen optischen Aktivität von Flüssigkeiten und Gasen , 1929 .

[80]  M. Hicks,et al.  Validation of new microvolume Couette flow linear dichroism cells. , 2005, The Analyst.

[81]  K. Gekko,et al.  Secondary-structure analysis of proteins by vacuum-ultraviolet circular dichroism spectroscopy. , 2004, Journal of biochemistry.

[82]  Roland Lindh,et al.  Direct self-consistent reaction field with Pauli repulsion: solvation effects on methylene peroxide , 1996 .

[83]  Erik W. Thulstrup,et al.  NEAR-ULTRAVIOLET ELECTRONIC-TRANSITIONS OF THE TRYPTOPHAN CHROMOPHORE - LINEAR DICHROISM, FLUORESCENCE ANISOTROPY, AND MAGNETIC CIRCULAR-DICHROISM SPECTRA OF SOME INDOLE-DERIVATIVES , 1989 .

[84]  P. Bayley,et al.  The rotatory properties of molecules containing two peptide groups: theory. , 1969, The Journal of physical chemistry.

[85]  Jonathan D. Hirst,et al.  Influence of Tyrosine on the Electronic Circular Dichroism of Helical Peptides , 2003 .

[86]  D. Rogers,et al.  First-principles calculations of protein circular dichroism in the near ultraviolet. , 2004, Biochemistry.

[87]  Ernest L. Eliel,et al.  Stereochemistry of Organic Compounds , 1962 .

[88]  R. L. Baldwin,et al.  Mechanism of helix induction by trifluoroethanol: a framework for extrapolating the helix-forming properties of peptides from trifluoroethanol/water mixtures back to water. , 1997, Biochemistry.

[89]  Mark T. Oakley,et al.  Charge-transfer transitions in protein circular dichroism calculations. , 2006, Journal of the American Chemical Society.

[90]  J. Applequist,et al.  A full polarizability treatment of the π–π* absorption and circular dichroic spectra of α‐helical polypeptides , 1979 .

[91]  G. Karlstroem Electronic structure of hydrofluoride(1-) and hydrochloride(1-) in condensed phases studied by a CASSCF dielectric cavity model , 1989 .

[92]  L. Serpell,et al.  Protein fiber linear dichroism for structure determination and kinetics in a low-volume, low-wavelength couette flow cell. , 2004, Biophysical journal.

[93]  Howard DeVoe,et al.  Optical Properties of Molecular Aggregates. II. Classical Theory of the Refraction, Absorption, and Optical Activity of Solutions and Crystals , 1965 .

[94]  Narasimha Sreerama,et al.  Structural composition of βI‐ and βII‐proteins , 2003 .

[95]  D. Kemp,et al.  Large Circular Dichroism Ellipticities for N-Templated Helical Polypeptides Are Inconsistent with Currently Accepted Helicity Algorithms. , 1999, Angewandte Chemie.