The (logarithmic) Sobolev inequalities along geometric flow and applications
暂无分享,去创建一个
[1] On the best Sobolev inequality , 1999 .
[2] Emmanuel Hebey. Optimal Sobolev inequalities on complete Riemannian manifolds with Ricci curvature bounded below and positive injectivity radius , 1996 .
[3] Best constants in second-order Sobolev inequalities on Riemannian manifolds and applications , 2003 .
[4] B. Wang,et al. Space of Ricci Flows I , 2009, 0902.1545.
[5] Taotao Zheng,et al. An upper bound of the heat kernel along the harmonic-Ricci flow , 2015, 1501.00639.
[6] M. Ledoux,et al. Sobolev inequalities in disguise , 1995 .
[7] B. Wang. On the Conditions to Extend Ricci Flow , 2007, 0704.3018.
[8] T. Aubin,et al. Problèmes isopérimétriques et espaces de Sobolev , 1976 .
[9] N. Šešum. Convergence of a Kahler-Ricci flow , 2005 .
[10] Qi S. Zhang. Bounds on volume growth of geodesic balls under Ricci flow , 2011, 1107.4262.
[11] G. Talenti,et al. Best constant in Sobolev inequality , 1976 .
[12] Qi S. Zhang. A uniform Sobolev inequality under Ricci flow , 2007, 0706.1594.
[13] G. Perelman. The entropy formula for the Ricci flow and its geometric applications , 2002, math/0211159.
[14] Reto Müller,et al. Ricci flow coupled with harmonic map flow , 2009, 0912.2907.
[15] T. Aubin. Meilleures constantes dans le théorème d'inclusion de Sobolev et un théorème de Fredholm non linéaire pour la transformation conforme de la courbure scalaire , 1979 .
[16] Hung Tran,et al. Heat Kernel Estimates Under the Ricci–Harmonic Map Flow , 2013, Proceedings of the Edinburgh Mathematical Society.
[17] Harnack estimates for conjugate heat kernel on evolving manifolds , 2014, 1408.4155.
[18] L. Gross. LOGARITHMIC SOBOLEV INEQUALITIES. , 1975 .
[19] M. Holder. Contracting spacelike hypersurfaces by their inverse mean curvature , 2000, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.
[20] R. Muller. Monotone Volume Formulas for Geometric Flows , 2009, 0905.2328.
[21] F. Lin,et al. Elliptic Partial Differential Equations , 2000 .
[22] R. Ye. The Logarithmic Sobolev and Sobolev Inequalities Along the Ricci Flow , 2015 .
[23] Emmanuel Hebey. Nonlinear analysis on manifolds: Sobolev spaces and inequalities , 1999 .
[24] Jiawei Liu. The generalized Kähler Ricci flow , 2013 .
[25] L. Nirenberg,et al. On elliptic partial differential equations , 1959 .
[26] Shouwen Fang. Differential Harnack inequalities for heat equations with potentials under geometric flows , 2013 .
[27] Sobolev Inequalities, Riesz Transforms, and the Ricci Flow , 2007, 0709.0512.
[28] Tristan C. Collins,et al. The twisted Kahler-Ricci flow , 2012, 1207.5441.
[29] Wenshuai Jiang. Bergman Kernel Along The K\"{a}hler Ricci Flow and Tian's Conjecture , 2013, 1311.0428.
[30] A Gaussian upper bound of the conjugate heat equation along Ricci-harmonic flow , 2014, 1412.3200.
[31] P. Topping. Lectures on the Ricci Flow , 2006 .
[32] G. Carron,et al. INÉGALITÉS ISOPÉRIMÉTRIQUES DE FABER-KRAHN ET CONSÉQUENCES , 2002 .
[33] P. Zhu,et al. Differential Harnack estimates for backward heat equations with potentials under geometric flows , 2015 .
[34] G. Perelman. Ricci flow with surgery on three-manifolds , 2003, math/0303109.
[35] Optimal transportation and monotonic quantities on evolving manifolds , 2009, 0908.3293.
[36] Anqiang Zhu. Differential Harnack inequalities for the backward heat equation with potential under the harmonic–Ricci flow , 2013 .
[37] Anton Thalmaier,et al. ENTROPY AND LOWEST EIGENVALUE ON EVOLVING MANIFOLDS , 2013, 1305.0472.
[38] B. List. Evolution of an extended Ricci flow system , 2008 .
[39] Laurent Salo-Coste. Uniformly elliptic operators on Riemannian manifolds , 1992 .
[40] G. Mancini,et al. Sobolev inequalities in the , 2011 .
[41] R. Ye. The Logarithmic Sobolev Inequality Along the Ricci Flow: The Case $$\lambda _0(g_0)=0$$λ0(g0)=0 , 2007, 0708.2005.
[42] S. Hsu. Uniform Sobolev inequalities for manifolds evolving by Ricci flow , 2007, 0708.0893.
[43] Qi S. Zhang. Sobolev Inequalities, Heat Kernels under Ricci Flow, and the Poincare Conjecture , 2010 .
[44] Xiangwen Zhang,et al. Generalized Kähler–Einstein Metrics and Energy Functionals , 2014, Canadian Journal of Mathematics.
[45] The logarithmic Sobolev inequality along the Ricci flow in dimension 2 , 2007 .
[46] G. Tian,et al. BOUNDING SCALAR CURVATURE AND DIAMETER ALONG THE KÄHLER RICCI FLOW (AFTER PERELMAN) , 2008, Journal of the Institute of Mathematics of Jussieu.