The (logarithmic) Sobolev inequalities along geometric flow and applications

For some class of geometric flows, we obtain the (logarithmic) Sobolev inequalities and their equivalence up to different factors directly and also obtain the long time non-collapsing and non-inflated properties, which generalize the results in the case of Ricci flow or List-Ricci flow or harmonic-Ricci flow. As applications, for mean curvature flow in Lorentzian space with nonnegative sectional curvature and twisted Kahler-Ricci flow on Fano manifolds, we get the results above.

[1]  On the best Sobolev inequality , 1999 .

[2]  Emmanuel Hebey Optimal Sobolev inequalities on complete Riemannian manifolds with Ricci curvature bounded below and positive injectivity radius , 1996 .

[3]  Best constants in second-order Sobolev inequalities on Riemannian manifolds and applications , 2003 .

[4]  B. Wang,et al.  Space of Ricci Flows I , 2009, 0902.1545.

[5]  Taotao Zheng,et al.  An upper bound of the heat kernel along the harmonic-Ricci flow , 2015, 1501.00639.

[6]  M. Ledoux,et al.  Sobolev inequalities in disguise , 1995 .

[7]  B. Wang On the Conditions to Extend Ricci Flow , 2007, 0704.3018.

[8]  T. Aubin,et al.  Problèmes isopérimétriques et espaces de Sobolev , 1976 .

[9]  N. Šešum Convergence of a Kahler-Ricci flow , 2005 .

[10]  Qi S. Zhang Bounds on volume growth of geodesic balls under Ricci flow , 2011, 1107.4262.

[11]  G. Talenti,et al.  Best constant in Sobolev inequality , 1976 .

[12]  Qi S. Zhang A uniform Sobolev inequality under Ricci flow , 2007, 0706.1594.

[13]  G. Perelman The entropy formula for the Ricci flow and its geometric applications , 2002, math/0211159.

[14]  Reto Müller,et al.  Ricci flow coupled with harmonic map flow , 2009, 0912.2907.

[15]  T. Aubin Meilleures constantes dans le théorème d'inclusion de Sobolev et un théorème de Fredholm non linéaire pour la transformation conforme de la courbure scalaire , 1979 .

[16]  Hung Tran,et al.  Heat Kernel Estimates Under the Ricci–Harmonic Map Flow , 2013, Proceedings of the Edinburgh Mathematical Society.

[17]  Harnack estimates for conjugate heat kernel on evolving manifolds , 2014, 1408.4155.

[18]  L. Gross LOGARITHMIC SOBOLEV INEQUALITIES. , 1975 .

[19]  M. Holder Contracting spacelike hypersurfaces by their inverse mean curvature , 2000, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[20]  R. Muller Monotone Volume Formulas for Geometric Flows , 2009, 0905.2328.

[21]  F. Lin,et al.  Elliptic Partial Differential Equations , 2000 .

[22]  R. Ye The Logarithmic Sobolev and Sobolev Inequalities Along the Ricci Flow , 2015 .

[23]  Emmanuel Hebey Nonlinear analysis on manifolds: Sobolev spaces and inequalities , 1999 .

[24]  Jiawei Liu The generalized Kähler Ricci flow , 2013 .

[25]  L. Nirenberg,et al.  On elliptic partial differential equations , 1959 .

[26]  Shouwen Fang Differential Harnack inequalities for heat equations with potentials under geometric flows , 2013 .

[27]  Sobolev Inequalities, Riesz Transforms, and the Ricci Flow , 2007, 0709.0512.

[28]  Tristan C. Collins,et al.  The twisted Kahler-Ricci flow , 2012, 1207.5441.

[29]  Wenshuai Jiang Bergman Kernel Along The K\"{a}hler Ricci Flow and Tian's Conjecture , 2013, 1311.0428.

[30]  A Gaussian upper bound of the conjugate heat equation along Ricci-harmonic flow , 2014, 1412.3200.

[31]  P. Topping Lectures on the Ricci Flow , 2006 .

[32]  G. Carron,et al.  INÉGALITÉS ISOPÉRIMÉTRIQUES DE FABER-KRAHN ET CONSÉQUENCES , 2002 .

[33]  P. Zhu,et al.  Differential Harnack estimates for backward heat equations with potentials under geometric flows , 2015 .

[34]  G. Perelman Ricci flow with surgery on three-manifolds , 2003, math/0303109.

[35]  Optimal transportation and monotonic quantities on evolving manifolds , 2009, 0908.3293.

[36]  Anqiang Zhu Differential Harnack inequalities for the backward heat equation with potential under the harmonic–Ricci flow , 2013 .

[37]  Anton Thalmaier,et al.  ENTROPY AND LOWEST EIGENVALUE ON EVOLVING MANIFOLDS , 2013, 1305.0472.

[38]  B. List Evolution of an extended Ricci flow system , 2008 .

[39]  Laurent Salo-Coste Uniformly elliptic operators on Riemannian manifolds , 1992 .

[40]  G. Mancini,et al.  Sobolev inequalities in the , 2011 .

[41]  R. Ye The Logarithmic Sobolev Inequality Along the Ricci Flow: The Case $$\lambda _0(g_0)=0$$λ0(g0)=0 , 2007, 0708.2005.

[42]  S. Hsu Uniform Sobolev inequalities for manifolds evolving by Ricci flow , 2007, 0708.0893.

[43]  Qi S. Zhang Sobolev Inequalities, Heat Kernels under Ricci Flow, and the Poincare Conjecture , 2010 .

[44]  Xiangwen Zhang,et al.  Generalized Kähler–Einstein Metrics and Energy Functionals , 2014, Canadian Journal of Mathematics.

[45]  The logarithmic Sobolev inequality along the Ricci flow in dimension 2 , 2007 .

[46]  G. Tian,et al.  BOUNDING SCALAR CURVATURE AND DIAMETER ALONG THE KÄHLER RICCI FLOW (AFTER PERELMAN) , 2008, Journal of the Institute of Mathematics of Jussieu.