Improved Techniques for the Surveillance of the Near Earth Space Environment with the Murchison Widefield Array

In this paper we demonstrate improved techniques to extend coherent processing intervals for passive radar processing, with the Murchison Widefield Array. Specifically, we apply a two stage linear range and Doppler migration compensation by utilising Keystone Formatting and a recent dechirping method. These methods are used to further demonstrate the potential for the surveillance of space with the Murchison Widefield Array using passive radar, by detecting objects orders of magnitude smaller than previous work. This paper also demonstrates how the linear Doppler migration methods can be extended to higher order compensation to further increase potential processing intervals.

[1]  A. R. Whitney,et al.  On the Detection and Tracking of Space Debris Using the Murchison Widefield Array. I. Simulations and Test Observations Demonstrate Feasibility , 2013 .

[2]  Alan E. E. Rogers,et al.  Science with the Murchison Widefield Array , 2012, Publications of the Astronomical Society of Australia.

[3]  Pierfrancesco Lombardo,et al.  Multi-frame fractional Fourier transform technique for moving target detection with space-based passive radar , 2017 .

[4]  Craig R. Benson,et al.  Enhancing space situational awareness using passive radar from space based emitters of opportunity , 2014, 2014 Military Communications and Information Systems Conference (MilCIS).

[5]  Mateusz Malanowski,et al.  Accelerating rocket detection using passive bistatic radar , 2016, 2016 17th International Radar Symposium (IRS).

[6]  R. Melino,et al.  Application of the Fractional Fourier Transform in the Detection of Accelerating Targets in Clutter , 2011 .

[7]  P. E. Howland,et al.  FM radio based bistatic radar , 2005 .

[8]  David J. Frew,et al.  The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies , 2014 .

[9]  G. M. Warne,et al.  Decametric measurements of the ISS using an experimental HF line-of-sight radar , 2013, 2013 International Conference on Radar.

[10]  Cathryn M. Trott,et al.  The Phase II Murchison Widefield Array: Design overview , 2018, Publications of the Astronomical Society of Australia.

[11]  A. R. Whitney,et al.  LOW-FREQUENCY OBSERVATIONS OF THE MOON WITH THE MURCHISON WIDEFIELD ARRAY , 2012, 1211.1433.

[12]  James E. Palmer,et al.  Surveillance of Space using passive radar and the Murchison Widefield Array , 2017, 2017 IEEE Radar Conference (RadarConf).

[13]  J. Misiurewicz,et al.  Stretch Processing for Long Integration Time Passive Covert Radar , 2006, 2006 CIE International Conference on Radar.

[14]  Robert Braun The Square Kilometre Array: Current Status and Science Prospects , 2015 .

[15]  Hai-Tan Tran,et al.  Detection of Accelerating Targets in Clutter Using a De-Chirping Technique , 2014 .

[16]  Mark Rutten,et al.  Australian Space Situational Awareness Capability Demonstrations , 2017 .

[17]  A. R. Whitney,et al.  The High Time and Frequency Resolution Capabilities of the Murchison Widefield Array , 2015, Publications of the Astronomical Society of Australia.

[18]  A. R. Whitney,et al.  The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies , 2012, Publications of the Astronomical Society of Australia.

[19]  R. P. Perry,et al.  SAR imaging of moving targets , 1999 .

[20]  R. Kohlleppel Extent of Observation Parameters in Space Surveillance by Radar , 2018, 2018 19th International Radar Symposium (IRS).

[21]  K. Kulpa,et al.  Analysis of integration gain in passive radar , 2008, 2008 International Conference on Radar.

[22]  Jonas Myhre Christiansen,et al.  Coherent range and Doppler-walk compensation in PBR applications , 2014, 2014 15th International Radar Symposium (IRS).

[23]  Craig R. Benson,et al.  Affordable processing for long coherent integration of weak debris-scattered GNSS signals with inconsistent Doppler , 2016, 2016 Annual IEEE Systems Conference (SysCon).

[24]  Stephen Howard,et al.  An overview of an illuminator of opportunity passive radar research project and its signal processing research directions , 2011, Digit. Signal Process..

[25]  S Kodituwakku,et al.  Detection of Fast Moving and Accelerating Targets Compensating Range and Doppler Migration , 2014 .

[26]  F. Berizzi,et al.  Italian bistatic radar system for surveillance of space debris in Low Earth Orbit , 2010, 2010 IEEE Radar Conference.

[27]  Neel V. Patel Averting space doom [News] , 2015 .