Approximate Inference in State-Space Models With Heavy-Tailed Noise
暂无分享,去创建一个
[1] Joel M. Morris,et al. The Kalman filter: A robust estimator for some classes of linear quadratic problems , 1976, IEEE Trans. Inf. Theory.
[2] R. Muirhead. Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.
[3] Michael A. West,et al. Dynamic matrix-variate graphical models , 2007 .
[4] David Barber,et al. Expectation Correction for Smoothed Inference in Switching Linear Dynamical Systems , 2006, J. Mach. Learn. Res..
[5] H. Sorenson,et al. NONLINEAR FILTERING BY APPROXIMATION OF THE A POSTERIORI DENSITY , 1968 .
[6] Tom Drummond,et al. Student-tMixture Filter for Robust, Real-Time Visual Tracking , 2008, ECCV.
[7] Frederick R. Forst,et al. On robust estimation of the location parameter , 1980 .
[8] Wolfram Burgard,et al. Improving Data Association in Vision-based SLAM , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.
[9] Jeffrey K. Uhlmann,et al. New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.
[10] Simo Särkkä,et al. Recursive Noise Adaptive Kalman Filtering by Variational Bayesian Approximations , 2009, IEEE Transactions on Automatic Control.
[11] Eduardo Mario Nebot,et al. An outlier-robust Kalman filter , 2011, 2011 IEEE International Conference on Robotics and Automation.
[12] H. Akaike. A new look at the statistical model identification , 1974 .
[13] Huaiyu Zhu. On Information and Sufficiency , 1997 .
[14] Geoffrey E. Hinton,et al. Variational Learning for Switching State-Space Models , 2000, Neural Computation.
[15] M. Genton,et al. A skewed Kalman filter , 2005 .
[16] P. Diaconis,et al. Conjugate Priors for Exponential Families , 1979 .
[17] A. Roverato. Cholesky decomposition of a hyper inverse Wishart matrix , 2000 .
[18] Paweł J. Szabłowski. Elliptically contoured random variables and their application to the extension of the Kalman filter , 1990 .
[19] Timothy J. Robinson,et al. Sequential Monte Carlo Methods in Practice , 2003 .
[20] R. E. Kalman,et al. New Results in Linear Filtering and Prediction Theory , 1961 .
[21] D. Ruppert. Robust Statistics: The Approach Based on Influence Functions , 1987 .
[22] Hugh Durrant-Whyte,et al. Simultaneous localization and mapping (SLAM): part II , 2006 .
[23] S. Haykin,et al. Cubature Kalman Filters , 2009, IEEE Transactions on Automatic Control.
[24] Guanrong Chen,et al. Introduction to random signals and applied Kalman filtering, 2nd edn. Robert Grover Brown and Patrick Y. C. Hwang, Wiley, New York, 1992. ISBN 0‐471‐52573‐1, 512 pp., $62.95. , 1992 .
[25] Jacques H. Dreze,et al. Bayesian regression analysis using poly-t densities , 1977 .
[26] G'erard Letac,et al. Wishart distributions for decomposable graphs , 2007, 0708.2380.
[27] Simon J. Godsill,et al. On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..
[28] Stefan Schaal,et al. Automatic Outlier Detection: A Bayesian Approach , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.
[29] F. J. Girón,et al. Bayesian Kalman filtering with elliptically contoured errors , 1994 .
[30] Zoubin Ghahramani,et al. A Unifying Review of Linear Gaussian Models , 1999, Neural Computation.
[31] Stefan Schaal,et al. Learning an Outlier-Robust Kalman Filter , 2007, ECML.
[32] Geoffrey E. Hinton,et al. A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants , 1998, Learning in Graphical Models.
[33] A. O'Hagan. A moment of indecision , 1981 .
[34] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[35] M. Abramowitz,et al. Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .
[36] T. Kailath,et al. New square-root smoothing algorithms , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.
[37] P. Dooren,et al. Numerical aspects of different Kalman filter implementations , 1986 .
[38] Student,et al. THE PROBABLE ERROR OF A MEAN , 1908 .
[39] W. R. Buckland,et al. Outliers in Statistical Data , 1979 .
[40] David J. Fleet,et al. Robust Online Appearance Models for Visual Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..
[41] Fang Liu. Bayesian Time Series: Analysis Methods Using Simulation-Based Computation , 2000 .
[42] Ronald K. Pearson,et al. Outliers in process modeling and identification , 2002, IEEE Trans. Control. Syst. Technol..
[43] Tamar Frankel. [The theory and the practice...]. , 2001, Tijdschrift voor diergeneeskunde.
[44] 竹安 数博,et al. Time series analysis and its applications , 2007 .
[45] J. Jensen. Sur les fonctions convexes et les inégalités entre les valeurs moyennes , 1906 .
[46] Petros G. Voulgaris,et al. On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..
[47] Hugh F. Durrant-Whyte,et al. Simultaneous localization and mapping: part I , 2006, IEEE Robotics & Automation Magazine.
[48] Hugh Durrant-Whyte,et al. Simultaneous Localisation and Mapping ( SLAM ) : Part I The Essential Algorithms , 2006 .
[49] R. E. Kalman,et al. A New Approach to Linear Filtering and Prediction Problems , 2002 .
[50] H. Sorenson,et al. Recursive bayesian estimation using gaussian sums , 1971 .
[51] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[52] Stefan Schaal,et al. A Kalman filter for robust outlier detection , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.
[53] Matthew J. Beal. Variational algorithms for approximate Bayesian inference , 2003 .
[54] Thiagalingam Kirubarajan,et al. Estimation with Applications to Tracking and Navigation , 2001 .
[55] R. E. Mortensen,et al. Filtering for stochastic processes with applications to guidance , 1972 .
[56] F. E. Grubbs. Procedures for Detecting Outlying Observations in Samples , 1969 .
[57] A. Dawid. Some matrix-variate distribution theory: Notational considerations and a Bayesian application , 1981 .
[58] Richard J. Meinhold,et al. Robustification of Kalman Filter Models , 1989 .
[59] J. Wishart. THE GENERALISED PRODUCT MOMENT DISTRIBUTION IN SAMPLES FROM A NORMAL MULTIVARIATE POPULATION , 1928 .