Conditions de régularité géométrique pour les inéquations variationnelles
暂无分享,去创建一个
[1] S. Kakutani. A generalization of Brouwer’s fixed point theorem , 1941 .
[2] M. J. D. Powell,et al. Nonlinear Programming—Sequential Unconstrained Minimization Techniques , 1969 .
[3] D. Bertsekas. On the Goldstein-Levitin-Polyak gradient projection method , 1974, CDC 1974.
[4] A. Auslender. Optimisation : méthodes numériques , 1976 .
[5] N. Josephy. Newton's Method for Generalized Equations. , 1979 .
[6] N. Josephy. Quasi-Newton methods for generalized equations , 1979 .
[7] Jong-Shi Pang,et al. Iterative methods for variational and complementarity problems , 1982, Math. Program..
[8] Stella Dafermos,et al. An iterative scheme for variational inequalities , 1983, Math. Program..
[9] P. Marcotte,et al. A modified Newton method for solving variational inequalities , 1985, 1985 24th IEEE Conference on Decision and Control.
[10] Patrice Marcotte,et al. A new algorithm for solving variational inequalities with application to the traffic assignment problem , 1985, Math. Program..
[11] R. Tobin. Sensitivity analysis for variational inequalities , 1986 .
[12] P. Marcotte,et al. A note on a globally convergent Newton method for solving monotone variational inequalities , 1986 .
[13] Jerzy Kyparisis,et al. Sensitivity analysis framework for variational inequalities , 1987, Math. Program..
[14] R. Fletcher. Practical Methods of Optimization , 1988 .