Big-data analysis for carbon emission reduction from cars: Towards walkable green smart community

Abstract To achieve low carbon cities or green smart city, it is very important to foresee how we can reduce the number of cars in the residential communities without losing convenience and comfort of people. For that purpose, walkability is one of the key performance indicators expressing the environmental quality of a district. As the first step for creating a low-carbon smart community, this study attempts to evaluate the influence of walkability on traffic behavior of people by using mobile GPS data. Specifically, we statistically analyze the relationship between various walkability indices (centrality, betweenness, angularity, etc.) evaluated by road network data, and pedestrian movement estimated by mobile GPS data in the six main wards in Tokyo, Japan. The result suggests the usefulness of our approach for low-carbon smart community design rousing people’s walking activity. The walkability results and data are then compared to the results of a macrosimulation traffic model for the Sumida Ward of Tokyo to understand the impact that walkability may have on emissions if built environment conditions are improved in favor of a lesser automobile mode share.