Tunable Coupler for Realizing a Controlled-Phase Gate with Dynamically Decoupled Regime in a Superconducting Circuit

Controllable interaction between superconducting qubits is desirable for large-scale quantum computation and simulation. Here, based on a theoretical proposal by Yan et al. [Phys. Rev. Appl. 10, 054061 (2018)] we experimentally demonstrate a simply-designed and flux-controlled tunable coupler with a continuous tunability by adjusting the coupler frequency, which can completely turn off adjacent superconducting qubit coupling. Utilizing the tunable interaction between two qubits via the coupler, we implement a different type of controlled-phase (CZ) gate with 'dynamically decoupled regime', which allows the qubit-qubit coupling to be only 'on' at the usual operating point while dynamically 'off' during the tuning process of one qubit frequency into and out of the operating point. This scheme not only efficiently suppresses the leakage out of the computational subspace, but also allows for the acquired two-qubit phase being geometric at the operating point. We achieve an average CZ gate fidelity of 98.3(0.6), which is dominantly limited by qubit decoherence. The demonstrated tunable coupler provides a desirable tool to suppress adjacent qubit coupling and is suitable for large scale quantum computation and simulation.

[1]  John A. Pople,et al.  Approximate fourth-order perturbation theory of the electron correlation energy , 1978 .

[2]  S. Lloyd,et al.  DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.

[3]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[4]  Frederick W Strauch,et al.  Quantum logic gates for coupled superconducting phase qubits. , 2003, Physical review letters.

[5]  Shi-Liang Zhu,et al.  Geometric quantum gates that are robust against stochastic control errors , 2005 .

[6]  Franco Nori,et al.  Controllable coupling between flux qubits. , 2006, Physical review letters.

[7]  M. W. Johnson,et al.  Sign- and magnitude-tunable coupler for superconducting flux qubits , 2006, cond-mat/0608253.

[8]  H. Meyer,et al.  Controllable coupling of superconducting flux qubits. , 2006, Physical review letters.

[9]  S. Lloyd,et al.  Quantum Coherent Tunable Coupling of Superconducting Qubits , 2007, Science.

[10]  Alexandre Blais,et al.  Quantum information processing with circuit quantum electrodynamics , 2007 .

[11]  Jens Koch,et al.  Coupling superconducting qubits via a cavity bus , 2007, Nature.

[12]  L. DiCarlo,et al.  Demonstration of two-qubit algorithms with a superconducting quantum processor , 2009, Nature.

[13]  F. Nori,et al.  Quantum Simulators , 2009, Science.

[14]  Franco Nori,et al.  Quantum Zeno switch for single-photon coherent transport , 2008, 0812.2151.

[15]  Michel Devoret,et al.  Signal-to-pump back action and self-oscillation in double-pump Josephson parametric amplifier , 2009, 0902.0007.

[16]  J M Gambetta,et al.  Simple pulses for elimination of leakage in weakly nonlinear qubits. , 2009, Physical review letters.

[17]  M S Allman,et al.  rf-SQUID-mediated coherent tunable coupling between a superconducting phase qubit and a lumped-element resonator. , 2010, Physical review letters.

[18]  Xiang‐Bin Wang,et al.  Coexistence of single- and multi-photon processes due to longitudinal couplings between superconducting flux qubits and external fields , 2010, 1003.1671.

[19]  D. DiVincenzo,et al.  Schrieffer-Wolff transformation for quantum many-body systems , 2011, 1105.0675.

[20]  J. Clarke,et al.  Dispersive magnetometry with a quantum limited SQUID parametric amplifier , 2010, 1003.2466.

[21]  M Weides,et al.  Fast tunable coupler for superconducting qubits. , 2011, Physical review letters.

[22]  Blake R. Johnson,et al.  Simple all-microwave entangling gate for fixed-frequency superconducting qubits. , 2011, Physical review letters.

[23]  F. Nori,et al.  Atomic physics and quantum optics using superconducting circuits , 2011, Nature.

[24]  T. S. Mahesh,et al.  NMR implementation of a quantum delayed-choice experiment , 2011, 1112.3524.

[25]  Franco Nori,et al.  QuTiP: An open-source Python framework for the dynamics of open quantum systems , 2011, Comput. Phys. Commun..

[26]  A. Houck,et al.  On-chip quantum simulation with superconducting circuits , 2012, Nature Physics.

[27]  Luigi Frunzio,et al.  Realization of three-qubit quantum error correction with superconducting circuits , 2011, Nature.

[28]  Guanyu Zhu,et al.  Circuit QED with fluxonium qubits: Theory of the dispersive regime , 2012, 1210.1605.

[29]  F. Nori,et al.  Quantum Simulation , 2013, Quantum Atom Optics.

[30]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[31]  Marco Lanzagorta,et al.  Quantum Simulators , 2013 .

[32]  M. Reed Entanglement and Quantum Error Correction with Superconducting Qubits , 2013, 1311.6759.

[33]  Franco Nori,et al.  QuTiP 2: A Python framework for the dynamics of open quantum systems , 2012, Comput. Phys. Commun..

[34]  R. Barends,et al.  Coherent Josephson qubit suitable for scalable quantum integrated circuits. , 2013, Physical review letters.

[35]  A. Korotkov Error matrices in quantum process tomography , 2013, 1309.6405.

[36]  Alexandre Blais,et al.  First-order sideband transitions with flux-driven asymmetric transmon qubits , 2013 .

[37]  C. Macklin,et al.  Observing single quantum trajectories of a superconducting quantum bit , 2013, Nature.

[38]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[39]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[40]  Zijun Chen,et al.  Fabrication and characterization of aluminum airbridges for superconducting microwave circuits , 2013, 1310.2325.

[41]  J. Martinis,et al.  Fast adiabatic qubit gates using only σ z control , 2014, 1402.5467.

[42]  A N Cleland,et al.  Optimal quantum control using randomized benchmarking. , 2014, Physical review letters.

[43]  Yu-xi Liu,et al.  Coexistence of single- and multi-photon processes due to longitudinal couplings between superconducting flux qubits and external fields , 2014 .

[44]  A N Cleland,et al.  Qubit Architecture with High Coherence and Fast Tunable Coupling. , 2014, Physical review letters.

[45]  Z. D. Wang,et al.  Universal Holonomic Quantum Gates in Decoherence-free Subspace on Superconducting Circuits , 2015 .

[46]  John M. Martinis,et al.  State preservation by repetitive error detection in a superconducting quantum circuit , 2015, Nature.

[47]  J. Gambetta,et al.  Procedure for systematically tuning up cross-talk in the cross-resonance gate , 2016, 1603.04821.

[48]  R. Barends,et al.  Dielectric surface loss in superconducting resonators with flux-trapping holes , 2016, 1607.05841.

[49]  W. Munro,et al.  An efficient and compact quantum switch for quantum circuits , 2016, 1605.06747.

[50]  Jay M. Gambetta,et al.  Universal Gate for Fixed-Frequency Qubits via a Tunable Bus , 2016, 1604.03076.

[51]  Blake R. Johnson,et al.  Unsupervised Machine Learning on a Hybrid Quantum Computer , 2017, 1712.05771.

[52]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[53]  F. Nori,et al.  Microwave photonics with superconducting quantum circuits , 2017, 1707.02046.

[54]  Jens Koch,et al.  Universal Stabilization of a Parametrically Coupled Qubit. , 2017, Physical review letters.

[55]  B. Terhal,et al.  Roads towards fault-tolerant universal quantum computation , 2016, Nature.

[56]  N. Langford,et al.  Tuneable hopping and nonlinear cross-Kerr interactions in a high-coherence superconducting circuit , 2018, npj Quantum Information.

[57]  Fei Yan,et al.  Tunable Coupling Scheme for Implementing High-Fidelity Two-Qubit Gates , 2018, Physical Review Applied.

[58]  H Neven,et al.  A blueprint for demonstrating quantum supremacy with superconducting qubits , 2017, Science.

[59]  D. Russell,et al.  Parametrically Activated Entangling Gates Using Transmon Qubits , 2017, Physical Review Applied.

[60]  Oleksandr Kyriienko,et al.  Floquet Quantum Simulation with Superconducting Qubits , 2017, Physical Review Applied.

[61]  Sabrina Hong,et al.  Demonstration of universal parametric entangling gates on a multi-qubit lattice , 2017, Science Advances.

[62]  Yu-xi Liu,et al.  Tuning the coupling between superconducting resonators with collective qubits , 2017, Physical Review A.

[63]  Zijun Chen,et al.  A method for building low loss multi-layer wiring for superconducting microwave devices , 2018 .

[64]  Tao Chen,et al.  Perfect quantum state transfer in a superconducting qubit chain with parametrically tunable couplings. , 2018, 1806.03886.

[65]  Tao Chen,et al.  Nonadiabatic Geometric Quantum Computation with Parametrically Tunable Coupling , 2018, Physical Review Applied.

[66]  Yu-xi Liu,et al.  An efficient and compact switch for quantum circuits , 2018, npj Quantum Information.

[67]  John C. Platt,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[68]  Andrew A. Houck,et al.  Suppression of Qubit Crosstalk in a Tunable Coupling Superconducting Circuit , 2018, Physical Review Applied.

[69]  Fei Yan,et al.  A quantum engineer's guide to superconducting qubits , 2019, Applied Physics Reviews.

[70]  Xiaobo Zhu,et al.  Realisation of high-fidelity nonadiabatic CZ gates with superconducting qubits , 2019, npj Quantum Information.

[71]  B. Foxen,et al.  Diabatic Gates for Frequency-Tunable Superconducting Qubits. , 2019, Physical review letters.

[72]  Nelson Leung,et al.  A dissipatively stabilized Mott insulator of photons , 2018, Nature.

[73]  Suotang Jia,et al.  Observation of Topological Magnon Insulator States in a Superconducting Circuit. , 2019, Physical review letters.

[74]  H. Fan,et al.  Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits , 2019, Science.

[75]  Alicia J. Kollár,et al.  Hyperbolic lattices in circuit quantum electrodynamics , 2018, Nature.

[76]  Franco Nori,et al.  Strongly correlated quantum walks with a 12-qubit superconducting processor , 2019, Science.

[77]  Z. Xue,et al.  Experimental Implementation of Universal Nonadiabatic Geometric Quantum Gates in a Superconducting Circuit. , 2019, Physical review letters.

[78]  C. K. Andersen,et al.  Repeated quantum error detection in a surface code , 2019, Nature Physics.