On Bayesian testimation and its application to wavelet thresholding

We consider the problem of estimating the unknown response function in the Gaussian white noise model. We first utilize the recently developed Bayesian maximum a posteriori testimation procedure of Abramovich et al. (2007) for recovering an unknown high-dimensional Gaussian mean vector. The existing results for its upper error bounds over various sparse l p -balls are extended to more general cases. We show that, for a properly chosen prior on the number of nonzero entries of the mean vector, the corresponding adaptive estimator is asymptotically minimax in a wide range of sparse and dense l p -balls. The proposed procedure is then applied in a wavelet context to derive adaptive global and level-wise wavelet estimators of the unknown response function in the Gaussian white noise model. These estimators are then proven to be, respectively, asymptotically near-minimax and minimax in a wide range of Besov balls. These results are also extended to the estimation of derivatives of the response function. Simulated examples are conducted to illustrate the performance of the proposed level-wise wavelet estimator in finite sample situations, and to compare it with several existing counterparts. Copyright 2010, Oxford University Press.

[1]  I. Johnstone,et al.  Minimax risk overlp-balls forlp-error , 1994 .

[2]  B. Silverman,et al.  Wavelet thresholding via a Bayesian approach , 1998 .

[3]  C. Angelini,et al.  Wavelet regression estimation in nonparametric mixed effect models , 2003 .

[4]  Dean Phillips Foster,et al.  Calibration and Empirical Bayes Variable Selection , 1997 .

[5]  B. Silverman,et al.  Incorporating Information on Neighboring Coefficients Into Wavelet Estimation , 2001 .

[6]  Y. Benjamini,et al.  Adaptive thresholding of wavelet coefficients , 1996 .

[7]  Felix Abramovich,et al.  On optimality of Bayesian testimation in the normal means problem , 2007, 0712.0904.

[8]  I. Johnstone,et al.  Minimax Risk over l p-Balls for l q-error , 1994 .

[9]  G. Nason,et al.  Real nonparametric regression using complex wavelets , 2004 .

[10]  I. Daubechies,et al.  Wavelets on the Interval and Fast Wavelet Transforms , 1993 .

[11]  Wayne Lawton,et al.  Applications of complex valued wavelet transforms to subband decomposition , 1993, IEEE Trans. Signal Process..

[12]  I. Johnstone,et al.  Adapting to unknown sparsity by controlling the false discovery rate , 2005, math/0505374.

[13]  B. Silverman,et al.  Wavelet decomposition approaches to statistical inverse problems , 1998 .

[14]  Anestis Antoniadis,et al.  Wavelet Estimators in Nonparametric Regression: A Comparative Simulation Study , 2001 .

[15]  Dean P. Foster,et al.  Local Asymptotic Coding and the Minimum Description Length , 1999, IEEE Trans. Inf. Theory.

[16]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[17]  I. Johnstone,et al.  Needles and straw in haystacks: Empirical Bayes estimates of possibly sparse sequences , 2004, math/0410088.

[18]  D. Donoho Unconditional Bases Are Optimal Bases for Data Compression and for Statistical Estimation , 1993 .

[19]  Athanasia A. Petsa,et al.  Contributions to wavelet methods in nonparametric statistics , 2009 .

[20]  G. Nason Wavelet Shrinkage using Cross-validation , 1996 .

[21]  I. Johnstone,et al.  Minimax estimation via wavelet shrinkage , 1998 .

[22]  Y. Meyer Wavelets and Operators , 1993 .

[23]  Felix Abramovich,et al.  Bayesian Maximum a posteriori Multiple Testing Procedure , 2006 .

[24]  Michael H. Neumann,et al.  Exact Risk Analysis of Wavelet Regression , 1998 .

[25]  Bernard W. Silverman,et al.  Boundary coiflets for wavelet shrinkage in function estimation , 2004, Journal of Applied Probability.

[26]  I. Johnstone,et al.  Empirical Bayes selection of wavelet thresholds , 2005, math/0508281.

[27]  I. Johnstone,et al.  Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .

[28]  P. Massart,et al.  Gaussian model selection , 2001 .

[29]  L. Brown,et al.  Asymptotic equivalence of nonparametric regression and white noise , 1996 .

[30]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[31]  T. Cai Adaptive wavelet estimation : A block thresholding and oracle inequality approach , 1999 .

[32]  D. L. Donoho,et al.  Ideal spacial adaptation via wavelet shrinkage , 1994 .

[33]  Theofanis Sapatinas,et al.  FREQUENTIST OPTIMALITY OF BAYES FACTOR ESTIMATORS IN WAVELET REGRESSION MODELS , 2007 .

[34]  Edward I. George,et al.  Empirical Bayes Estimation in Wavelet Nonparametric Regression , 1999 .