Guiding, modulating, and emitting light on Silicon-challenges and opportunities

Silicon photonics could enable a chip-scale platform for monolithic integration of optics and microelectronics for applications of optical interconnects in which high data streams are required in a small footprint. This paper discusses mechanisms in silicon photonics for waveguiding, modulating, light amplification, and emission. These mechanisms, together with recent advances of fabrication techniques, have enabled the demonstration of ultracompact passive and active silicon photonic components with very low loss.

[1]  B. Jalali,et al.  Silicon photonics , 2006, IEEE Microwave Magazine.

[2]  B. Jalali,et al.  Silicon Photonics , 2006, Journal of Lightwave Technology.

[3]  C. Gunn,et al.  CMOS photonics/spl trade/ - SOI learns a new trick , 2005, 2005 IEEE International SOI Conference Proceedings.

[4]  Anand M Pappu,et al.  Analysis of intrachip electrical and optical fanout. , 2005, Applied optics.

[5]  Qianfan Xu,et al.  Micrometre-scale silicon electro-optic modulator , 2005, Nature.

[6]  M. Morse,et al.  High speed silicon Mach-Zehnder modulator. , 2005, Optics express.

[7]  M. Paniccia,et al.  A continuous-wave Raman silicon laser , 2005, Nature.

[8]  L. D. Negro,et al.  Optical gain in different silicon nanocrystal systems , 2005 .

[9]  R. Walters,et al.  Field-effect electroluminescence in silicon nanocrystals , 2005, Nature materials.

[10]  Alexander Fang,et al.  An all-silicon Raman laser , 2005, Nature.

[11]  Michal Lipson,et al.  All-optical switching on a silicon chip. , 2004, Optics letters.

[12]  M. Lipson,et al.  Modeling and analysis of high-speed electro-optic modulation in high confinement silicon waveguides using metal-oxide-semiconductor configuration , 2004 .

[13]  M. Lipson,et al.  All-optical control of light on a silicon chip , 2004, Nature.

[14]  Michal Lipson,et al.  Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides. , 2004, Optics express.

[15]  Y. Vlasov,et al.  Raman amplification in ultrasmall silicon-on-insulator wire waveguides. , 2004, Optics express.

[16]  Qianfan Xu,et al.  Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material. , 2004, Optics letters.

[17]  Henning Braunisch,et al.  Optical I/O technology for digital VLSI , 2004, SPIE OPTO.

[18]  Qianfan Xu,et al.  Guiding and confining light in void nanostructure. , 2004, Optics letters.

[19]  Y. Vlasov,et al.  Losses in single-mode silicon-on-insulator strip waveguides and bends. , 2004, Optics express.

[20]  H. Tsang,et al.  Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides , 2004 .

[21]  J.C. Campbell,et al.  Metal-germanium-metal photodetectors on heteroepitaxial Ge-on-Si with amorphous Ge Schottky barrier enhancement layers , 2004, IEEE Photonics Technology Letters.

[22]  M. Paniccia,et al.  A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor , 2004, Nature.

[23]  Michal Lipson,et al.  Electrooptic modulation of silicon-on-insulator submicrometer-size waveguide devices , 2003 .

[24]  Sharon M. Weiss,et al.  Temperature stability for silicon-based photonic band-gap structures , 2003 .

[25]  M. Lipson,et al.  Nanotaper for compact mode conversion. , 2003, Optics letters.

[26]  R. Claps,et al.  Observation of stimulated Raman amplification in silicon waveguides , 2003, The 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2003. LEOS 2003..

[27]  Andre Delage,et al.  Scaling down photonic waveguide devices on the SOI platform , 2003, SPIE Microtechnologies.

[28]  Antonella Sciuto,et al.  Design, fabrication, and testing of an integrated Si-based light modulator , 2003, Photonics Fabrication Europe.

[29]  Lorenzo Pavesi,et al.  Towards the First Silicon Laser , 2003 .

[30]  Lionel C. Kimerling Silicon Microphotonics: The Next Killer Technology , 2003 .

[31]  T. Tsuchizawa,et al.  Low loss mode size converter from 0.3 /spl mu/m square Si wire waveguides to singlemode fibres , 2002 .

[32]  Maria Miritello,et al.  Electroluminescence at 1.54 μm in Er-doped Si nanocluster-based devices , 2002 .

[33]  James D. Meindl,et al.  Interconnect Opportunities for Gigascale Integration , 2002, IEEE Micro.

[34]  Se-Young Seo,et al.  Optical gain at 1.54 μm in erbium-doped silicon nanocluster sensitized waveguide , 2001 .

[35]  Axel Scherer,et al.  High Quality Two-Dimensional Photonic Crystal Slab Cavities , 2001 .

[36]  L C Kimerling,et al.  Fabrication of ultralow-loss Si/SiO(2) waveguides by roughness reduction. , 2001, Optics letters.

[37]  Thomas E. Murphy,et al.  Fabrication and characterization of narrow-band Bragg-reflection filters in silicon-on-insulator ridge waveguides , 2001 .

[38]  H. Haus,et al.  Compact mode-size converters for efficient coupling between fibers and integrated optical waveguides , 2001, 2001 Digest of LEOS Summer Topical Meetings: Advanced Semiconductor Lasers and Applications/Ultraviolet and Blue Lasers and Their Applications/Ultralong Haul DWDM Transmission and Networking/WDM Compo.

[39]  Simulation and analysis of a high-efficiency silicon optoelectronic modulator based on a Bragg mirror , 2001 .

[40]  A. Scherer,et al.  Waveguiding at 1550 nm using photonic crystal structures in silicon on insulator wafers , 2000, OFC 2001. Optical Fiber Communication Conference and Exhibit. Technical Digest Postconference Edition (IEEE Cat. 01CH37171).

[41]  Kevin Kidoo Lee Transmission and routing of optical signals in on-chip waveguides for silicon microphotonics , 2001 .

[42]  G. Masini,et al.  Germanium on silicon pin photodiodes for the near infrared , 2000 .

[43]  Luca Dal Negro,et al.  Optical gain in silicon nanocrystals , 2000, Nature.

[44]  D. Miller,et al.  Optical interconnects to silicon , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[45]  A. Scherer,et al.  Design and fabrication of silicon photonic crystal optical waveguides , 2000, Journal of Lightwave Technology.

[46]  Pieter G. Kik Energy transfer in erbium doped optical waveguides based on silicon , 2000 .

[47]  L. Kimerling,et al.  Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model , 2000 .

[48]  Enrico Gratton,et al.  Stimulated blue emission in reconstituted films of ultrasmall silicon nanoparticles , 2000 .

[49]  T. Gregorkiewicz,et al.  Energy Transfer Between Shallow Centers and RE Ion Core: Er3+ Ion in Silicon, , 2000 .

[50]  Fabio Iacona,et al.  Correlation between luminescence and structural properties of Si nanocrystals , 2000 .

[51]  Lionel C. Kimerling Photons to the Rescue: Microelectronics Becomes Microphotonics , 2000 .

[52]  Hermann A. Haus,et al.  Micron-sized channel-dropping filters using silicon waveguide devices , 1999, Optics East.

[53]  Steven G. Johnson,et al.  High-density integrated optics , 1999 .

[54]  Chi Fan,et al.  Power minimization and technology comparisons for digital free-space optoelectronic interconnections , 1999 .

[55]  Xinwei Zhao,et al.  FABRICATION AND STIMULATED EMISSION OF ER-DOPED NANOCRYSTALLINE SI WAVEGUIDES FORMED ON SI SUBSTRATES BY LASER ABLATION , 1999 .

[56]  Bradley K. Smith,et al.  A three-dimensional photonic crystal operating at infrared wavelengths , 1998, Nature.

[57]  Salvatore Coffa,et al.  Excitation and nonradiative deexcitation processes of Er 3 + in crystalline Si , 1998 .

[58]  Ingrid Moerman,et al.  A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices , 1997 .

[59]  Henry I. Smith,et al.  Photonic-bandgap microcavities in optical waveguides , 1997, Nature.

[60]  Keiichi Yamamoto,et al.  1.54 μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: Evidence for energy transfer from Si nanocrystals to Er3+ , 1997 .

[61]  Andrea Irace,et al.  AN ELECTRICALLY CONTROLLED BRAGG REFLECTOR INTEGRATED IN A RIB SILICON ON INSULATOR WAVEGUIDE , 1997 .

[62]  Gerhard Abstreiter,et al.  INFLUENCE OF THE ERBIUM AND OXYGEN CONTENT ON THE ELECTROLUMINESCENCE OF EPITAXIALLY GROWN ERBIUM-DOPED SILICON DIODES , 1997 .

[63]  Ivo Rendina,et al.  A temperature all-silicon micro-sensor based on the thermo-optic effect , 1997 .

[64]  Salvatore Coffa,et al.  Mechanism and performance of forward and reverse bias electroluminescence at 1.54 μm from Er-doped Si diodes , 1997 .

[65]  Luigi Zeni,et al.  Silicon electro-optic modulator based on a three terminal device integrated in a low-loss single-mode SOI waveguide , 1997 .

[66]  Ce Zhou Zhao,et al.  Silicon-on-insulator asymmetric optical switch based on total internal reflection , 1997, IEEE Photonics Technology Letters.

[67]  Zheng,et al.  Electroluminescence of erbium-doped silicon. , 1996, Physical review. B, Condensed matter.

[68]  Lionel C. Kimerling,et al.  Low‐loss polycrystalline silicon waveguides for silicon photonics , 1996 .

[69]  C Z Zhao,et al.  Zero-gap directional coupler switch integrated into a silicon-on insulator for 1.3-microm operation. , 1996, Optics letters.

[70]  F. Priolo,et al.  High efficiency and fast modulation of Er‐doped light emitting Si diodes , 1996 .

[71]  Albert Chin,et al.  Picosecond photoresponse of carriers in Si ion‐implanted Si , 1996 .

[72]  K. Petermann,et al.  0.1 dB/cm waveguide losses in single-mode SOI rib waveguides , 1996, IEEE Photonics Technology Letters.

[73]  B. Jalali,et al.  Guided-wave Optical Circuits in Silicon-on-Insulator Technology , 1996 .

[74]  A. Polman,et al.  Incorporation and optical activation of erbium in silicon using molecular beam epitaxy , 1996 .

[75]  Mark Y. Liu,et al.  High‐modulation‐depth and short‐cavity‐length silicon Fabry–Perot modulator with two grating Bragg reflectors , 1996 .

[76]  Xiaolian Liu,et al.  Silicon on insulator Mach–Zehnder waveguide interferometers operating at 1.3 μm , 1995 .

[77]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[78]  G. Cocorullo,et al.  Silicon thermooptical micromodulator with 700-kHz -3-dB bandwidth , 1995, IEEE Photonics Technology Letters.

[79]  Graham T. Reed,et al.  Highly efficient optical phase modulator in SOI waveguides , 1995 .

[80]  G. N. van den Hoven,et al.  Erbium in crystal silicon: Optical activation, excitation, and concentration limits , 1995 .

[81]  U. Fano Atomic and molecular physics , 1995 .

[82]  Polman,et al.  Temperature dependence and quenching processes of the intra-4f luminescence of Er in crystalline Si. , 1994, Physical review. B, Condensed matter.

[83]  J. Poate,et al.  Room‐temperature sharp line electroluminescence at λ=1.54 μm from an erbium‐doped, silicon light‐emitting diode , 1994 .

[84]  Huang Ge,et al.  Novel silicon waveguide switch based on total internal reflection , 1994 .

[85]  Jinsheng Luo,et al.  Silicon 1*2 digital optical switch using plasma dispersion , 1994 .

[86]  H. Tam Erbium-doped fibre amplifiers , 1993 .

[87]  Ivo Rendina,et al.  All-silicon Fabry-Perot modulator based on thermo-optic effect , 1991, Other Conferences.

[88]  Jurgen Michel,et al.  Impurity enhancement of the 1.54‐μm Er3+ luminescence in silicon , 1991 .

[89]  R. Soref,et al.  Large single-mode rib waveguides in GeSi-Si and Si-on-SiO/sub 2/ , 1991 .

[90]  G. Burbach,et al.  Low loss singlemode optical waveguides with large cross-section in silicon-on-insulator , 1991 .

[91]  J.C. Sturm,et al.  Fabry-Perot optical intensity modulator at 1.3 mu m in silicon , 1991, IEEE Photonics Technology Letters.

[92]  Richard A. Soref,et al.  Simulation studies of silicon electro-optic waveguide devices , 1990, Integrated Photonics Research.

[93]  M. Salvi,et al.  Optical Activation of Er3+ Implanted in Silicon by Oxygen Impurities , 1990 .

[94]  Richard A. Soref,et al.  Kramers-Kronig Analysis Of Electro-Optical Switching In Silicon , 1987, Other Conferences.

[95]  R. Soref,et al.  Electrooptical effects in silicon , 1987 .

[96]  R. Soref,et al.  All-silicon active and passive guided-wave components for λ = 1.3 and 1.6 µm , 1986 .

[97]  J. Wolfe,et al.  Drift and Diffusion of Free Excitons in Si , 1980 .

[98]  R. B. Hammond,et al.  Temperature dependence of the exciton lifetime in high‐purity silicon , 1980 .

[99]  J. Harris,et al.  Analysis of curved optical waveguides by conformal transformation , 1975, IEEE Journal of Quantum Electronics.

[100]  P. Tien Light waves in thin films and integrated optics. , 1971, Applied optics.