Parity lifetime of bound states in a proximitized semiconductor nanowire

Bound states in semiconductor–superconductor hybrids are shown to have parity lifetimes of over 10 milliseconds, suggesting that they could provide a platform for topological quantum computing.

[1]  Liang Fu,et al.  Electron teleportation via Majorana bound states in a mesoscopic superconductor. , 2009, Physical review letters.

[2]  C. Schönenberger,et al.  Giant fluctuations and gate control of the g-factor in InAs nanowire quantum dots. , 2008, Nano letters.

[3]  B. Johnson,et al.  Measurements of quasiparticle tunneling dynamics in a band-gap-engineered transmon qubit. , 2011, Physical review letters.

[4]  Christian Schönenberger,et al.  Hybrid superconductor-quantum dot devices. , 2010, Nature nanotechnology.

[5]  G. Refael,et al.  Helical liquids and Majorana bound states in quantum wires. , 2010, Physical review letters.

[6]  J. Martinis,et al.  Energy decay in superconducting Josephson-junction qubits from nonequilibrium quasiparticle excitations. , 2009, Physical review letters.

[7]  Tinkham,et al.  Experimental evidence for parity-based 2e periodicity in a superconducting single-electron tunneling transistor. , 1992, Physical review letters.

[8]  Guang-Yao Huang,et al.  Anomalous zero-bias conductance peak in a Nb-InSb nanowire-Nb hybrid device. , 2012, Nano letters.

[9]  S Das Sarma,et al.  Generic new platform for topological quantum computation using semiconductor heterostructures. , 2009, Physical review letters.

[10]  Meng Cheng,et al.  Topological protection of Majorana qubits , 2011, 1112.3662.

[11]  L. Samuelson,et al.  Tunable effective g factor in InAs nanowire quantum dots , 2005 .

[12]  S. Das Sarma,et al.  Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures. , 2010, Physical review letters.

[13]  Quantum effects in Coulomb blockade , 2001, cond-mat/0103008.

[14]  Nazarov,et al.  Single-electron charging of a superconducting island. , 1992, Physical review letters.

[15]  Matveev,et al.  Coulomb blockade of two-electron tunneling. , 1993, Physical review letters.

[16]  Esteve,et al.  Measurement of the even-odd free-energy difference of an isolated superconductor. , 1993, Physical review letters.

[17]  E. Bakkers,et al.  Tunable Supercurrent Through Semiconductor Nanowires , 2005, Science.

[18]  D. Estève,et al.  Evidence for long-lived quasiparticles trapped in superconducting point contacts. , 2011, Physical review letters.

[19]  C. Marcus,et al.  Hard gap in epitaxial semiconductor-superconductor nanowires. , 2014, Nature nanotechnology.

[20]  J. Pekola,et al.  Excitation of single quasiparticles in a small superconducting Al island connected to normal-metal leads by tunnel junctions. , 2013, Physical review letters.

[21]  A. Oiwa,et al.  Tunneling spectroscopy of Andreev energy levels in a quantum dot coupled to a superconductor. , 2010, Physical review letters.

[22]  Charles M. Lieber,et al.  Zero-bias anomaly in a nanowire quantum dot coupled to superconductors. , 2012, Physical review letters.

[23]  C. Marcus,et al.  Tunneling spectroscopy of quasiparticle bound states in a spinful Josephson junction. , 2012, Physical review letters.

[24]  Charles M. Lieber,et al.  Spin-resolved Andreev levels and parity crossings in hybrid superconductor-semiconductor nanostructures. , 2013, Nature nanotechnology.

[25]  S. Sarma,et al.  Realizing a robust practical Majorana chain in a quantum-dot-superconductor linear array , 2011, Nature Communications.

[26]  M. Governale,et al.  A Josephson quantum electron pump , 2011, 1102.4207.

[27]  C. Urbina,et al.  Dynamics of quasiparticle trapping in Andreev levels , 2013, 1309.7283.

[28]  L. Glazman,et al.  EFFECTS OF CHARGE PARITY IN TUNNELING THROUGH A SUPERCONDUCTING GRAIN , 1994 .

[29]  John M. Martinis,et al.  Banishing quasiparticles from Josephson-junction qubits: why and how to do it , 2003 .

[30]  A. Yeyati,et al.  Majorana single-charge transistor. , 2012, Physical review letters.

[31]  D. Loss,et al.  Majorana qubit decoherence by quasiparticle poisoning , 2012, 1204.3326.

[32]  Y. Oreg,et al.  Zero-bias peaks and splitting in an Al–InAs nanowire topological superconductor as a signature of Majorana fermions , 2012, Nature Physics.

[33]  C. Schönenberger,et al.  Cooper pair splitter realized in a two-quantum-dot Y-junction , 2009, Nature.

[34]  A. Yeyati,et al.  Quasiparticle trapping, Andreev level population dynamics, and charge imbalance in superconducting weak links , 2014, 1407.7991.

[35]  R. Motte Angiography 1979: When, Why, and How to Do It: , 1979 .

[36]  Michael Tinkham,et al.  Introduction to Superconductivity , 1975 .

[37]  Y. Nazarov,et al.  Theoretical proposal for superconducting spin qubits , 2009, 0912.3910.

[38]  M. Leijnse,et al.  Parity qubits and poor man's Majorana bound states in double quantum dots , 2012, 1207.4299.

[39]  M. Leijnse,et al.  Scheme to measure Majorana fermion lifetimes using a quantum dot , 2010, 1012.4650.

[40]  F E Hudson,et al.  Microsecond resolution of quasiparticle tunneling in the single-Cooper-pair transistor. , 2006, Physical review letters.

[41]  R. N. Schouten,et al.  Millisecond charge-parity fluctuations and induced decoherence in a superconducting transmon qubit , 2012, Nature Communications.

[42]  C. Marcus,et al.  Epitaxy of semiconductor-superconductor nanowires. , 2014, Nature materials.

[43]  R. Schoelkopf,et al.  Coherent suppression of electromagnetic dissipation due to superconducting quasiparticles , 2014, Nature.

[44]  Y. Oreg,et al.  Adaptive tuning of Majorana fermions in a quantum dot chain , 2012, New Journal of Physics.

[45]  Tinkham,et al.  Charge transport by Andreev reflection through a mesoscopic superconducting island. , 1994, Physical review letters.

[46]  John M Martinis,et al.  Nonequilibrium quasiparticles and 2e periodicity in single-Cooper-pair transistors. , 2004, Physical review letters.

[47]  M. Leijnse,et al.  Coupling spin qubits via superconductors. , 2013, Physical review letters.

[48]  E. Bakkers,et al.  Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices , 2012, Science.

[49]  C. M. Marcus,et al.  Superconductor-nanowire devices from tunneling to the multichannel regime: Zero-bias oscillations and magnetoconductance crossover , 2013, 1303.2407.

[50]  J. Pekola,et al.  Vanishing quasiparticle density in a hybrid Al/Cu/Al single-electron transistor , 2011, 1106.1326.

[51]  T M Klapwijk,et al.  Number fluctuations of sparse quasiparticles in a superconductor. , 2011, Physical review letters.

[52]  A. Yeyati,et al.  Andreev bound states in supercurrent-carrying carbon nanotubes revealed , 2010 .