Rapid diversification by recombination in Bartonella grahamii from wild rodents in Asia contrasts with low levels of genomic divergence in Northern Europe and America

Bartonella is a genus of vector‐borne bacteria that infect the red blood cells of mammals, and includes several human‐specific and zoonotic pathogens. Bartonella grahamii has a wide host range and is one of the most prevalent Bartonella species in wild rodents. We studied the population structure, genome content and genome plasticity of a collection of 26 B. grahamii isolates from 11 species of wild rodents in seven countries. We found strong geographic patterns, high recombination frequencies and large variations in genome size in B. grahamii compared with previously analysed cat‐ and human‐associated Bartonella species. The extent of sequence divergence in B. grahamii populations was markedly lower in Europe and North America than in Asia, and several recombination events were predicted between the Asian strains. We discuss environmental and demographic factors that may underlie the observed differences.

[1]  B. Chomel,et al.  Epidemiology of Bartonella Infection in Rodents and Shrews in Taiwan , 2010, Zoonoses and public health.

[2]  S. Andersson,et al.  Genome dynamics of Bartonella grahamii in micro-populations of woodland rodents , 2010, BMC Genomics.

[3]  S. Andersson,et al.  Run-Off Replication of Host-Adaptability Genes Is Associated with Gene Transfer Agents in the Genome of Mouse-Infecting Bartonella grahamii , 2009, PLoS genetics.

[4]  B. Durand,et al.  Molecular Epidemiology of Feline and Human Bartonella henselae Isolates , 2009, Emerging infectious diseases.

[5]  J. Westberg,et al.  The mosaic genome structure of the Wolbachia wRi strain infecting Drosophila simulans , 2009, Proceedings of the National Academy of Sciences.

[6]  X. Didelot,et al.  A comparison of homologous recombination rates in bacteria and archaea , 2009, The ISME Journal.

[7]  H. Schwarz,et al.  The head of Bartonella adhesin A is crucial for host cell interaction of Bartonella henselae , 2008, Cellular microbiology.

[8]  M. Achtman Evolution, population structure, and phylogeography of genetically monomorphic bacterial pathogens. , 2008, Annual review of microbiology.

[9]  N. Takada,et al.  Prevalence and Genetic Diversity of Bartonella Species Isolated from Wild Rodents in Japan , 2008, Applied and Environmental Microbiology.

[10]  A. Löytynoja,et al.  Phylogeny-Aware Gap Placement Prevents Errors in Sequence Alignment and Evolutionary Analysis , 2008, Science.

[11]  Edward J. Feil,et al.  Multi-Locus Sequence Typing of Bartonella henselae Isolates from Three Continents Reveals Hypervirulent and Feline-Associated Clones , 2007, PloS one.

[12]  S. Schuster,et al.  Genomic analysis of Bartonella identifies type IV secretion systems as host adaptability factors , 2007, Nature Genetics.

[13]  D. Raoult,et al.  Genetic Diversity of Bartonella henselae in Human Infection Detected with Multispacer Typing , 2007, Emerging infectious diseases.

[14]  D. Gordon,et al.  Analysis of the First Australian Strains of Bartonella quintana Reveals Unique Genotypes , 2007, Journal of Clinical Microbiology.

[15]  P. Gibbard,et al.  The extent and chronology of Cenozoic Global Glaciation , 2007 .

[16]  D. Falush,et al.  Inference of Bacterial Microevolution Using Multilocus Sequence Data , 2007, Genetics.

[17]  M. Begon,et al.  Contrasting dynamics of Bartonella spp. in cyclic field vole populations: the impact of vector and host dynamics , 2006, Parasitology.

[18]  P. Guye,et al.  A Translocated Bacterial Protein Protects Vascular Endothelial Cells from Apoptosis , 2006, PLoS pathogens.

[19]  V. Deffontaine,et al.  A northern glacial refugium for bank voles (Clethrionomys glareolus) , 2006, Proceedings of the National Academy of Sciences.

[20]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[21]  S. Andersson,et al.  Genome Rearrangements, Deletions, and Amplifications in the Natural Population of Bartonella henselae , 2006, Journal of bacteriology.

[22]  D. Raoult,et al.  Multispacer Typing To Study the Genotypic Distribution of Bartonella henselae Populations , 2006, Journal of Clinical Microbiology.

[23]  D. Huson,et al.  Application of phylogenetic networks in evolutionary studies. , 2006, Molecular biology and evolution.

[24]  D. Raoult,et al.  Molecular Screening of Bartonella Species in Rodents from the Russian Far East , 2005, Annals of the New York Academy of Sciences.

[25]  M. Bangs,et al.  Bartonella species in rodents and shrews in the greater Jakarta area. , 2005, The Southeast Asian journal of tropical medicine and public health.

[26]  S. Andersson,et al.  Characterization of the Genome Composition of Bartonella koehlerae by Microarray Comparative Genomic Hybridization Profiling , 2005, Journal of bacteriology.

[27]  B. Chomel,et al.  Factors associated with the rapid emergence of zoonotic Bartonella infections. , 2005, Veterinary research.

[28]  Christoph Dehio,et al.  A bipartite signal mediates the transfer of type IV secretion substrates of Bartonella henselae into human cells. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[29]  David Posada,et al.  RDP2: recombination detection and analysis from sequence alignments , 2005, Bioinform..

[30]  D. Raoult,et al.  Multispacer Typing Technique for Sequence-Based Typing of Bartonella quintana , 2005, Journal of Clinical Microbiology.

[31]  N. Moran,et al.  Genomic changes following host restriction in bacteria. , 2004, Current opinion in genetics & development.

[32]  M. Schirle,et al.  Bartonella Adhesin A Mediates a Proangiogenic Host Cell Response , 2004, The Journal of experimental medicine.

[33]  R. Birtles,et al.  Diversity of bartonellae associated with small mammals inhabiting Free State province, South Africa. , 2004, International journal of systematic and evolutionary microbiology.

[34]  M. P. Cummings PHYLIP (Phylogeny Inference Package) , 2004 .

[35]  M. Achtman Population structure of pathogenic bacteria revisited. , 2004, International journal of medical microbiology : IJMM.

[36]  Smitha George,et al.  A family of variably expressed outer-membrane proteins (Vomp) mediates adhesion and autoaggregation in Bartonella quintana. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[37]  K. Rowe,et al.  Surviving the ice: Northern refugia and postglacial colonization. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[38]  E. Karlberg,et al.  The louse-borne human pathogen Bartonella quintana is a genomic derivative of the zoonotic agent Bartonella henselae. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[39]  M. Begon,et al.  Flea-borne Bartonella grahamii and Bartonella taylorii in Bank Voles , 2004, Emerging infectious diseases.

[40]  M. Dehio,et al.  The VirB type IV secretion system of Bartonella henselae mediates invasion, proinflammatory activation and antiapoptotic protection of endothelial cells , 2004, Molecular microbiology.

[41]  E. Feil,et al.  Characterization of the Natural Population of Bartonella henselae by Multilocus Sequence Typing , 2003, Journal of Clinical Microbiology.

[42]  B. Granel,et al.  Occlusion bilatérale des branches de l’artère centrale de la rétine révélant une infection à Bartonella grahamii , 2003 .

[43]  C. Dehio,et al.  A bacterial conjugation machinery recruited for pathogenesis , 2003, Molecular microbiology.

[44]  J. Cook,et al.  Genetic footprints of demographic expansion in North America, but not Amazonia, during the Late Quaternary , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[45]  C. Nieberding,et al.  Mitochondrial phylogeography of the Woodmouse (Apodemus sylvaticus) in the Western Palearctic region , 2003, Molecular ecology.

[46]  B. Ellis,et al.  Bartonella infection in sylvatic small mammals of central Sweden , 2003, Epidemiology and Infection.

[47]  C. Dehio,et al.  The VirB/VirD4 type IV secretion system of Bartonella is essential for establishing intraerythrocytic infection , 2002, Molecular microbiology.

[48]  W. Whitman,et al.  Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. , 2002, International journal of systematic and evolutionary microbiology.

[49]  K. Tsuchiya,et al.  Genetic and ecologic characteristics of Bartonella communities in rodents in southern China. , 2002, The American journal of tropical medicine and hygiene.

[50]  Hui-Hsien Chou,et al.  DNA sequence quality trimming and vector removal , 2001, Bioinform..

[51]  A. Rothova,et al.  Demonstration of Bartonella grahamii DNA in Ocular Fluids of a Patient with Neuroretinitis , 1999, Journal of Clinical Microbiology.

[52]  D. Raoult,et al.  Survey of Bartonella species infecting intradomicillary animals in the Huayllacallán Valley, Ancash, Peru, a region endemic for human bartonellosis. , 1999, The American journal of tropical medicine and hygiene.

[53]  E. Breitschwerdt,et al.  Persistent infection of pets within a household with three Bartonella species. , 1998, Emerging infectious diseases.

[54]  P Green,et al.  Base-calling of automated sequencer traces using phred. II. Error probabilities. , 1998, Genome research.

[55]  P. Green,et al.  Consed: a graphical tool for sequence finishing. , 1998, Genome research.

[56]  P. Green,et al.  Base-calling of automated sequencer traces using phred. I. Accuracy assessment. , 1998, Genome research.

[57]  S. Harris,et al.  Handbook of British Mammals , 1996 .

[58]  H. Artsob,et al.  Evolutional and Geographical Relationships of Bartonella grahamii Isolates from Wild Rodents by Multi-locus Sequencing Analysis , 2009, Microbial Ecology.

[59]  N. Pedersen,et al.  The ascent of cat breeds: genetic evaluations of breeds and worldwide random-bred populations. , 2008, Genomics.

[60]  V. N. Bashkirov,et al.  [Wild small mammals are the reservoir hosts of the Bartonella genus bacteria in the south of Moscow region]. , 2006, Molecular Genetics Microbiology and Virology (Russian version).

[61]  C. Dehio,et al.  Characterization of the cryptic plasmid pBGR1 from Bartonella grahamii and construction of a versatile Escherichia coli-Bartonella spp. shuttle cloning vector. , 2003, Plasmid.

[62]  J. Aviérinos,et al.  [Bilateral retinal artery branch occlusions revealing Bartonella grahamii infection]. , 2003, La Revue de medecine interne.

[63]  Daniel H. Huson,et al.  SplitsTree: analyzing and visualizing evolutionary data , 1998, Bioinform..

[64]  R. Birtles,et al.  Proposals to unify the genera Grahamella and Bartonella, with descriptions of Bartonella talpae comb. nov., Bartonella peromysci comb. nov., and three new species, Bartonella grahamii sp. nov., Bartonella taylorii sp. nov., and Bartonella doshiae sp. nov. , 1995, International journal of systematic bacteriology.