Tutorial: Common path self-referencing digital holographic microscopy

Quantitative phase imaging of cells provides important morphological information about them, leading to their characterization, comparison, and identification. The interference principle when applied to microscopy provides high-contrast quantitative phase images of otherwise transparent objects along with their thickness information. The two-beam off-axis geometry of interference microscopes, in which the light beam interacting with the object interferes with a separate reference beam, is preferred since it leads to single shot quantitative phase imaging methodologies. But these techniques lead to bulky setups, with lower temporal stability not suitable for the measurement of nanometer-level cell thickness fluctuations. Self-referencing interference microscopes manipulate a portion of the light beam interacting with the cells to act as the reference, leading to compact, temporally stable geometries ideal for the measurement of cell dynamics. Here we present an overview of our efforts in the development of self-referencing digital holographic microscopes and their use in quantitative phase imaging of cells.

[1]  Young Jae Lee,et al.  Magnified Image Spatial Spectrum (MISS) microscopy for nanometer and millisecond scale label-free imaging. , 2018, Optics express.

[2]  Bahram Javidi,et al.  Sickle cell disease diagnosis based on spatio-temporal cell dynamics analysis using 3D printed shearing digital holographic microscopy. , 2018, Optics express.

[3]  R. Barer Interference Microscopy and Mass Determination , 1952, Nature.

[4]  Bahram Javidi,et al.  Digital holographic microscopy for automated 3D cell identification: an overview (Invited Paper) , 2014 .

[5]  Bahram Javidi,et al.  Automated segmentation of multiple red blood cells with digital holographic microscopy , 2013, Journal of biomedical optics.

[6]  B. Javidi,et al.  Identification of Malaria-Infected Red Blood Cells Via Digital Shearing Interferometry and Statistical Inference , 2013, IEEE Photonics Journal.

[7]  Christian Depeursinge,et al.  Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy. , 2009, Journal of biomedical optics.

[8]  Frank Dubois,et al.  Automated three-dimensional detection and classification of living organisms using digital holographic microscopy with partial spatial coherent source: application to the monitoring of drinking water resources. , 2013, Applied optics.

[9]  Zeev Zalevsky,et al.  Spatially-multiplexed interferometric microscopy (SMIM): converting a standard microscope into a holographic one. , 2014, Optics express.

[10]  Bahram Javidi,et al.  Flipping interferometry and its application for quantitative phase microscopy in a micro-channel. , 2016, Optics letters.

[11]  Serge Monneret,et al.  Thermal imaging of nanostructures by quantitative optical phase analysis. , 2012, ACS nano.

[12]  Bahram Javidi,et al.  Automated multi-parameter measurement of cardiomyocytes dynamics with digital holographic microscopy. , 2015, Optics express.

[13]  Bahram Javidi,et al.  Entropy-based clustering of embryonic stem cells using digital holographic microscopy. , 2014, Journal of the Optical Society of America. A, Optics, image science, and vision.

[14]  Yongkeun Park,et al.  Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum , 2008, Proceedings of the National Academy of Sciences.

[15]  P. Marquet,et al.  Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer , 2008, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[16]  A. Anand,et al.  Compact, common path quantitative phase microscopic techniques for imaging cell dynamics , 2014 .

[17]  I. Yamaguchi,et al.  Three-dimensional microscopy with phase-shifting digital holography. , 1998, Optics letters.

[18]  Bahram Javidi,et al.  Wide field of view common-path lateral-shearing digital holographic interference microscope , 2017, Journal of biomedical optics.

[19]  Patrik Langehanenberg,et al.  Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy. , 2010, Journal of biomedical optics.

[20]  Vittorio Bianco,et al.  Endowing a plain fluidic chip with micro-optics: a holographic microscope slide , 2017, Light: Science & Applications.

[21]  Björn Kemper,et al.  Simplified approach for quantitative digital holographic phase contrast imaging of living cells. , 2011, Journal of biomedical optics.

[22]  B. Wattellier,et al.  Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells. , 2009, Optics express.

[23]  P. Marquet,et al.  Automated statistical quantification of three-dimensional morphology and mean corpuscular hemoglobin of multiple red blood cells. , 2012, Optics express.

[24]  Bahram Javidi,et al.  Automated Disease Identification With 3-D Optical Imaging: A Medical Diagnostic Tool , 2017, Proceedings of the IEEE.

[25]  B. Kemper,et al.  Digital holographic microscopy for live cell applications and technical inspection. , 2008, Applied optics.

[26]  Bahram Javidi,et al.  Digital holographic microscopy with coupled optical fiber trap for cell measurement and manipulation. , 2014, Optics letters.

[27]  YongKeun Park,et al.  Quantitative phase imaging unit. , 2014, Optics letters.

[28]  Tan H. Nguyen,et al.  Gradient light interference microscopy for 3D imaging of unlabeled specimens , 2017, Nature Communications.

[29]  Bahram Javidi,et al.  Automated quantitative analysis of 3D morphology and mean corpuscular hemoglobin in human red blood cells stored in different periods. , 2013, Optics express.

[30]  Gabriel Popescu,et al.  Observation of dynamic subdomains in red blood cells. , 2006, Journal of biomedical optics.

[31]  Natan T Shaked,et al.  Quantitative phase microscopy of biological samples using a portable interferometer. , 2012, Optics letters.

[32]  P Memmolo,et al.  Identification of bovine sperm head for morphometry analysis in quantitative phase-contrast holographic microscopy. , 2011, Optics express.

[33]  A. Faridian,et al.  Single beam Fourier transform digital holographic quantitative phase microscopy , 2014 .

[34]  R. Kiss,et al.  Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration. , 2006, Journal of biomedical optics.

[35]  B Javidi,et al.  Real-Time Digital Holographic Microscopy for Phase Contrast 3D Imaging of Dynamic Phenomena , 2010, Journal of Display Technology.

[36]  Natan T. Shaked,et al.  Whole-cell-analysis of live cardiomyocytes using wide-field interferometric phase microscopy , 2010, Biomedical optics express.

[37]  Bahram Javidi,et al.  Stable and simple quantitative phase-contrast imaging by Fresnel biprism , 2018 .

[38]  R. Dasari,et al.  Diffraction phase microscopy for quantifying cell structure and dynamics. , 2006, Optics letters.

[39]  Jong Chul Ye,et al.  Self-reference quantitative phase microscopy for microfluidic devices. , 2010, Optics letters.

[40]  Bahram Javidi,et al.  Quantitative phase-contrast imaging with compact digital holographic microscope employing Lloyd's mirror. , 2012, Optics letters.

[41]  M. Mir,et al.  Blood testing at the single cell level using quantitative phase and amplitude microscopy , 2011, Biomedical optics express.

[42]  M. Takeda,et al.  Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry , 1982 .

[43]  Bahram Javidi,et al.  Compact and field-portable 3D printed shearing digital holographic microscope for automated cell identification. , 2017, Applied optics.

[44]  J. Chi,et al.  Automated Detection of P. falciparum Using Machine Learning Algorithms with Quantitative Phase Images of Unstained Cells , 2016, PloS one.

[45]  P. So,et al.  Diffraction optical tomography using a quantitative phase imaging unit. , 2014, Optics letters.

[46]  E. Cuche,et al.  Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. , 2005, Optics letters.

[47]  Robert L. Price,et al.  Basic Confocal Microscopy , 2018 .

[48]  F. Zernike Phase contrast, a new method for the microscopic observation of transparent objects , 1942 .

[49]  B. Javidi,et al.  Imaging Embryonic Stem Cell Dynamics Using Quantitative 3-D Digital Holographic Microscopy , 2011, IEEE Photonics Journal.

[50]  Bahram Javidi,et al.  Highly stable digital holographic microscope using Sagnac interferometer. , 2015, Optics letters.

[51]  J. Rogers,et al.  Spatial light interference microscopy (SLIM) , 2010, IEEE Photonic Society 24th Annual Meeting.

[52]  B. Javidi,et al.  Automatic Identification of Malaria-Infected RBC With Digital Holographic Microscopy Using Correlation Algorithms , 2012, IEEE Photonics Journal.

[53]  E. Cuche,et al.  Digital holography for quantitative phase-contrast imaging. , 1999, Optics letters.

[54]  Bahram Javidi,et al.  Lateral shearing digital holographic imaging of small biological specimens. , 2012, Optics express.

[55]  Bahram Javidi,et al.  Optofluidic system for three-dimensional sensing and identification of micro-organisms with digital holographic microscopy. , 2010, Optics letters.

[56]  E. Cuche,et al.  Cell refractive index tomography by digital holographic microscopy. , 2006, Optics letters.

[57]  Zeev Zalevsky,et al.  Coherent light microscopy , 2011 .

[58]  Pinhas Girshovitz,et al.  Generalized cell morphological parameters based on interferometric phase microscopy and their application to cell life cycle characterization , 2012, Biomedical optics express.

[59]  E. Thamm,et al.  Single scattering by red blood cells. , 1998, Applied optics.

[60]  Bahram Javidi,et al.  Cell Identification Computational 3-D Holographic Microscopy , 2011 .