Annotating and modeling empathy in spoken conversations

Empathy, as defined in behavioral sciences, expresses the ability of human beings to recognize, understand and react to emotions, attitudes and beliefs of others. The lack of an operational definition of empathy makes it difficult to measure it. In this paper, we address two related problems in automatic affective behavior analysis: the design of the annotation protocol and the automatic recognition of empathy from spoken conversations. We propose and evaluate an annotation scheme for empathy inspired by the modal model of emotions. The annotation scheme was evaluated on a corpus of real-life, dyadic spoken conversations. In the context of behavioral analysis, we designed an automatic segmentation and classification system for empathy. Given the different speech and language levels of representation where empathy may be communicated, we investigated features derived from the lexical and acoustic spaces. The feature development process was designed to support both the fusion and automatic selection of relevant features from high dimensional space. The automatic classification system was evaluated on call center conversations where it showed significantly better performance than the baseline.

[1]  Загоровская Ольга Владимировна,et al.  Исследование влияния пола и психологических характеристик автора на количественные параметры его текста с использованием программы Linguistic Inquiry and Word Count , 2015 .

[2]  Maite Taboada,et al.  Lexicon-Based Methods for Sentiment Analysis , 2011, CL.

[3]  Maja Pantic,et al.  This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. IEEE TRANSACTIONS ON AFFECTIVE COMPUTING , 2022 .

[4]  John C. Platt,et al.  Fast training of support vector machines using sequential minimal optimization, advances in kernel methods , 1999 .

[5]  Firoj Alam,et al.  Emotion Unfolding and Affective Scenes: A Case Study in Spoken Conversations , 2015, ERM4CT@ICMI.

[6]  Nitesh V. Chawla,et al.  SMOTE: Synthetic Minority Over-sampling Technique , 2002, J. Artif. Intell. Res..

[7]  J. R. Landis,et al.  The measurement of observer agreement for categorical data. , 1977, Biometrics.

[8]  Johan Bollen,et al.  Modeling Public Mood and Emotion: Twitter Sentiment and Socio-Economic Phenomena , 2009, ICWSM.

[9]  Zhihong Zeng,et al.  A Survey of Affect Recognition Methods: Audio, Visual, and Spontaneous Expressions , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Mike Thelwall,et al.  Sentiment in Twitter events , 2011, J. Assoc. Inf. Sci. Technol..

[11]  Yulan He,et al.  Joint sentiment/topic model for sentiment analysis , 2009, CIKM.

[12]  Ipke Wachsmuth,et al.  A Computational Model of Empathy: Empirical Evaluation , 2013, 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction.

[13]  K. Ochsner,et al.  The neuroscience of empathy: progress, pitfalls and promise , 2012, Nature Neuroscience.

[15]  Q. Mcnemar Note on the sampling error of the difference between correlated proportions or percentages , 1947, Psychometrika.

[16]  R. Woodworth,et al.  Lectures on the Experimental Psychology of the Thought-Processes , 1910 .

[17]  Bo Pang,et al.  Thumbs up? Sentiment Classification using Machine Learning Techniques , 2002, EMNLP.

[18]  Mike Thelwall,et al.  A Study of Information Retrieval Weighting Schemes for Sentiment Analysis , 2010, ACL.

[19]  Rafael A. Calvo,et al.  Affect Detection: An Interdisciplinary Review of Models, Methods, and Their Applications , 2010, IEEE Transactions on Affective Computing.

[20]  Fakhri Karray,et al.  Survey on speech emotion recognition: Features, classification schemes, and databases , 2011, Pattern Recognit..

[21]  Fabien Ringeval,et al.  Introducing the RECOLA multimodal corpus of remote collaborative and affective interactions , 2013, 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG).

[22]  Igor Kononenko,et al.  Estimating Attributes: Analysis and Extensions of RELIEF , 1994, ECML.

[23]  Zhihong Zeng,et al.  A Survey of Affect Recognition Methods: Audio, Visual, and Spontaneous Expressions , 2009, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  David Sander,et al.  A systems approach to appraisal mechanisms in emotion , 2005, Neural Networks.

[25]  Jeffrey Dean,et al.  Efficient Estimation of Word Representations in Vector Space , 2013, ICLR.

[26]  Björn W. Schuller,et al.  SenticNet 4: A Semantic Resource for Sentiment Analysis Based on Conceptual Primitives , 2016, COLING.

[27]  Björn W. Schuller,et al.  The Geneva Minimalistic Acoustic Parameter Set (GeMAPS) for Voice Research and Affective Computing , 2016, IEEE Transactions on Affective Computing.

[28]  J. Zaki,et al.  Empathy: a motivated account. , 2014, Psychological bulletin.

[29]  Fabio Valente,et al.  The INTERSPEECH 2013 computational paralinguistics challenge: social signals, conflict, emotion, autism , 2013, INTERSPEECH.

[30]  R. Cowie,et al.  The description of naturally occurring emotional speech , 2003 .

[31]  Firoj Alam,et al.  Unsupervised recognition and clustering of speech overlaps in spoken conversations , 2014, SLAM@INTERSPEECH.

[32]  ThelwallMike,et al.  Sentiment strength detection in short informal text , 2010 .

[33]  John Blitzer,et al.  Biographies, Bollywood, Boom-boxes and Blenders: Domain Adaptation for Sentiment Classification , 2007, ACL.

[34]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[35]  Björn W. Schuller,et al.  The INTERSPEECH 2009 emotion challenge , 2009, INTERSPEECH.

[36]  François Laviolette,et al.  Domain-Adversarial Training of Neural Networks , 2015, J. Mach. Learn. Res..

[37]  Joann L. Robinson,et al.  Empathy and Prosocial Behavior , 2008 .

[38]  Alexander Lerch,et al.  An Introduction to Audio Content Analysis: Applications in Signal Processing and Music Informatics , 2012 .

[39]  Svetha Venkatesh,et al.  Classification and Pattern Discovery of Mood in Weblogs , 2010, PAKDD.

[40]  Björn W. Schuller,et al.  Acoustic emotion recognition: A benchmark comparison of performances , 2009, 2009 IEEE Workshop on Automatic Speech Recognition & Understanding.

[41]  Mike Thelwall,et al.  Sentiment in short strength detection informal text , 2010 .

[42]  B. Parkinson,et al.  Personality and Social Psychology Review Do Facial Movements Express Emotions or Communicate Motives? Personality and Social Psychology Review Additional Services and Information for Do Facial Movements Express Emotions or Communicate Motives? Emotion Expression vs. Motive Communication Emotion Expr , 2022 .

[43]  Christopher Potts,et al.  Learning Word Vectors for Sentiment Analysis , 2011, ACL.

[44]  Lei Zhang,et al.  A Survey of Opinion Mining and Sentiment Analysis , 2012, Mining Text Data.

[45]  Björn W. Schuller,et al.  Recent developments in openSMILE, the munich open-source multimedia feature extractor , 2013, ACM Multimedia.

[46]  Steven Skiena,et al.  Large-Scale Sentiment Analysis for News and Blogs (system demonstration) , 2007, ICWSM.

[47]  EmoTV 1 : Annotation of Real-life Emotions for the Specification of Multimodal Affective Interfaces , 2005 .

[48]  Panayiotis G. Georgiou,et al.  Analyzing the language of therapist empathy in Motivational Interview based psychotherapy , 2012, Proceedings of The 2012 Asia Pacific Signal and Information Processing Association Annual Summit and Conference.

[49]  Johanna D. Moore,et al.  Twitter Sentiment Analysis: The Good the Bad and the OMG! , 2011, ICWSM.

[50]  Antonio Origlia,et al.  Automatic classification of emotions via global and local prosodic features on a multilingual emotional database , 2010 .

[51]  Firoj Alam,et al.  Can we detect speakers' empathy?: A real-life case study , 2016, 2016 7th IEEE International Conference on Cognitive Infocommunications (CogInfoCom).

[52]  Arindam Ghosh,et al.  In the mood for sharing contents: Emotions, personality and interaction styles in the diffusion of news , 2016, Inf. Process. Manag..

[53]  E. Titchener Scientific Books: Lectures on the Experimental Psychology of the Thought-Processes , 2009 .

[54]  Junji Yamato,et al.  Analyzing empathetic interactions based on the probabilistic modeling of the co-occurrence patterns of facial expressions in group meetings , 2011, Face and Gesture 2011.

[55]  J. Gross The Emerging Field of Emotion Regulation: An Integrative Review , 1998 .

[56]  Firoj Alam,et al.  Comparative study of speaker personality traits recognition in conversational and broadcast news speech , 2013, INTERSPEECH.

[57]  Daniel Povey,et al.  The Kaldi Speech Recognition Toolkit , 2011 .

[58]  Firoj Alam,et al.  Automatic Labeling Affective Scenes in Spoken Conversations , 2018, Cognitive Infocommunications, Theory and Applications.

[59]  Ramón López-Cózar,et al.  Improving acceptability assessment for the labelling of affective speech corpora , 2009, INTERSPEECH.

[60]  Jeonghee Yi,et al.  Sentiment analysis: capturing favorability using natural language processing , 2003, K-CAP '03.

[61]  William Ickes,et al.  The development of meaning contexts for empathic accuracy: Channel and sequence effects. , 1999 .

[62]  Klaus Krippendorff,et al.  Content Analysis: An Introduction to Its Methodology , 1980 .

[63]  S. Preston,et al.  The Many Faces of Empathy: Parsing Empathic Phenomena through a Proximate, Dynamic-Systems View of Representing the Other in the Self , 2012 .

[64]  Björn W. Schuller,et al.  Context-Sensitive Learning for Enhanced Audiovisual Emotion Classification , 2012, IEEE Transactions on Affective Computing.

[65]  J. Pennebaker,et al.  The Psychological Meaning of Words: LIWC and Computerized Text Analysis Methods , 2010 .

[66]  George N. Votsis,et al.  Emotion recognition in human-computer interaction , 2001, IEEE Signal Process. Mag..

[67]  T. Singer,et al.  The Social Neuroscience of Empathy , 2009, Annals of the New York Academy of Sciences.

[68]  Erik Cambria,et al.  Affective Computing and Sentiment Analysis , 2016, IEEE Intelligent Systems.

[69]  Dilek Z. Hakkani-Tür,et al.  Using context to improve emotion detection in spoken dialog systems , 2005, INTERSPEECH.

[70]  Björn W. Schuller,et al.  Segmenting into Adequate Units for Automatic Recognition of Emotion-Related Episodes: A Speech-Based Approach , 2010, Adv. Hum. Comput. Interact..

[71]  A. Goldman,et al.  Mirror neurons and the simulation theory of mind-reading , 1998, Trends in Cognitive Sciences.

[72]  Björn W. Schuller,et al.  Recognising realistic emotions and affect in speech: State of the art and lessons learnt from the first challenge , 2011, Speech Commun..

[73]  Stefan Stieglitz,et al.  Emotions and Information Diffusion in Social Media—Sentiment of Microblogs and Sharing Behavior , 2013, J. Manag. Inf. Syst..

[74]  Eduardo Lleida,et al.  Audio segmentation-by-classification approach based on factor analysis in broadcast news domain , 2014, EURASIP J. Audio Speech Music. Process..

[75]  Janyce Wiebe Subjectivity Word Sense Disambiguation , 2009, EMNLP 2009.

[76]  Maja Pantic,et al.  Automatic Analysis of Facial Expressions: The State of the Art , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[77]  Jean Carletta,et al.  Assessing Agreement on Classification Tasks: The Kappa Statistic , 1996, CL.

[78]  อนิรุธ สืบสิงห์,et al.  Data Mining Practical Machine Learning Tools and Techniques , 2014 .

[79]  Thomas C. Schmidt Transcribing and annotating spoken language with EXMARaLDA , 2004 .

[80]  William Forde Thompson,et al.  Perceiving Prosody in Speech , 2003 .

[81]  Patrick Paroubek,et al.  Twitter as a Corpus for Sentiment Analysis and Opinion Mining , 2010, LREC.

[82]  Lillian Lee,et al.  Opinion Mining and Sentiment Analysis , 2008, Found. Trends Inf. Retr..

[83]  Björn W. Schuller,et al.  Paralinguistics in speech and language - State-of-the-art and the challenge , 2013, Comput. Speech Lang..

[84]  Anssi Peräkylä,et al.  Prosody and empathic communication in psychotherapy interaction , 2014, Psychotherapy research : journal of the Society for Psychotherapy Research.

[85]  Firoj Alam,et al.  Fusion of acoustic, linguistic and psycholinguistic features for Speaker Personality Traits recognition , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[86]  J. Decety,et al.  Human Empathy Through the Lens of Social Neuroscience , 2006, TheScientificWorldJournal.

[87]  F. Platt,et al.  Let Me See If I Have This Right : Words That Help Build Empathy , 2001, Annals of Internal Medicine.

[88]  Johannes Wagner,et al.  From Physiological Signals to Emotions: Implementing and Comparing Selected Methods for Feature Extraction and Classification , 2005, 2005 IEEE International Conference on Multimedia and Expo.

[89]  Ross A. Thompson,et al.  Emotion regulation: Conceptual foundations , 2007 .

[90]  Angeliki Metallinou,et al.  Annotation and processing of continuous emotional attributes: Challenges and opportunities , 2013, 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG).

[91]  Panayiotis G. Georgiou,et al.  Modeling therapist empathy through prosody in drug addiction counseling , 2014, INTERSPEECH.

[92]  Bo Pang,et al.  A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts , 2004, ACL.

[93]  Leonardo Badino,et al.  Prosodic analysis of a multi-style corpus in the perspective of emotional speech synthesis , 2004, INTERSPEECH.

[94]  Dilek Z. Hakkani-Tür,et al.  Grounding Emotions in Human-Machine Conversational Systems , 2005, INTETAIN.