Convergence analysis of the PML method for time-domain electromagnetic scattering problems

In this paper, a perfectly matched layer (PML) method is proposed to solve the time-domain electromagnetic scattering problems in 3D effectively. The PML problem is defined in a spherical layer and derived by using the Laplace transform and real coordinate stretching in the frequency domain. The well-posedness and the stability estimate of the PML problem are first proved based on the Laplace transform and the energy method. The exponential convergence of the PML method is then established in terms of the thickness of the layer and the PML absorbing parameter. As far as we know, this is the first convergence result for the time-domain PML method for the three-dimensional Maxwell equations. Our proof is mainly based on the stability estimates of solutions of the truncated PML problem and the exponential decay estimates of the stretched dyadic Green's function for the Maxwell equations in the free space.

[1]  E. Turkel,et al.  Absorbing PML boundary layers for wave-like equations , 1998 .

[2]  Zhiming,et al.  An Adaptive Uniaxial Perfectly Matched Layer Method for Time-Harmonic Scattering Problems , 2008 .

[3]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[4]  Weng Cho Chew,et al.  Advances in the theory of perfectly matched layers , 2001 .

[5]  Zhiming Chen,et al.  Long-Time Stability and Convergence of the Uniaxial Perfectly Matched Layer Method for Time-Domain Acoustic Scattering Problems , 2012, SIAM J. Numer. Anal..

[6]  Weiying Zheng,et al.  PML Method for Electromagnetic Scattering Problem in a Two-Layer Medium , 2017, SIAM J. Numer. Anal..

[7]  Peter Monk,et al.  The Perfectly Matched Layer in Curvilinear Coordinates , 1998, SIAM J. Sci. Comput..

[8]  Yunqing Huang,et al.  Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials , 2012 .

[9]  Zhiming Chen,et al.  An Adaptive Perfectly Matched Layer Technique for Time-harmonic Scattering Problems , 2005, SIAM J. Numer. Anal..

[10]  Peijun Li,et al.  Electromagnetic Scattering for Time-Domain Maxwell's Equations in an Unbounded Structure , 2016, 1604.07756.

[11]  G. Bao,et al.  Time-Domain Analysis of an Acoustic–Elastic Interaction Problem , 2018 .

[12]  Weiying Zheng,et al.  Convergence of the Uniaxial Perfectly Matched Layer Method for Time-Harmonic Scattering Problems in Two-Layered Media , 2010, SIAM J. Numer. Anal..

[13]  Zhiming Chen,et al.  International Journal of C 2009 Institute for Scientific Numerical Analysis and Modeling Computing and Information Convergence of the Time-domain Perfectly Matched Layer Method for Acoustic Scattering Problems , 2022 .

[14]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[15]  P. M. van den Berg,et al.  Absorbing boundary conditions and perfectly matched layers - an analytic time-domain performance analysis , 2002 .

[16]  Peijun Li,et al.  Electromagnetic Scattering by Unbounded Rough Surfaces , 2011, SIAM J. Math. Anal..

[17]  A. Buffa,et al.  On traces for H(curl,Ω) in Lipschitz domains , 2002 .

[18]  Qiang Chen,et al.  Discretization of the Time Domain CFIE for Acoustic Scattering Problems Using Convolution Quadrature , 2014, SIAM J. Math. Anal..

[19]  G. Hsiao,et al.  Time‐dependent fluid‐structure interaction , 2014, 1406.2171.

[20]  Frank Schmidt,et al.  Solving Time-Harmonic Scattering Problems Based on the Pole Condition II: Convergence of the PML Method , 2003, SIAM J. Math. Anal..

[21]  Joseph E. Pasciak,et al.  Analysis of a Cartesian PML approximation to acoustic scattering problems in R2 and R3 , 2013, J. Comput. Appl. Math..

[22]  Haijun Wu,et al.  An Adaptive Finite Element Method with Perfectly Matched Absorbing Layers for the Wave Scattering by Periodic Structures , 2003, SIAM J. Numer. Anal..

[23]  A. M. Cohen Numerical Methods for Laplace Transform Inversion , 2007 .

[24]  Matti Lassas,et al.  On the existence and convergence of the solution of PML equations , 1998, Computing.

[25]  Gang Bao,et al.  Convergence Analysis of the Perfectly Matched Layer Problemsfor Time-Harmonic Maxwell's Equations , 2005, SIAM J. Numer. Anal..

[26]  Peijun Li,et al.  Analysis of Transient Electromagnetic Scattering from a Three-Dimensional Open Cavity , 2015, SIAM J. Appl. Math..

[27]  Peijun Li,et al.  Analysis of Time-Domain Scattering by Periodic Structures , 2016, 1604.00944.

[28]  Peijun Li,et al.  Analysis of Transient Acoustic-Elastic Interaction in an Unbounded Structure , 2016, SIAM J. Math. Anal..

[29]  F. Trèves Basic Linear Partial Differential Equations , 1975 .

[30]  Yoshikazu Giga,et al.  Nonlinear Partial Differential Equations , 2004 .

[31]  Joseph E. Pasciak,et al.  Analysis of a finite PML approximation for the three dimensional time-harmonic Maxwell and acoustic scattering problems , 2006, Math. Comput..

[32]  J. Pasciak,et al.  ANALYSIS OF A CARTESIAN PML APPROXIMATION TO THE THREE DIMENSIONAL ELECTROMAGNETIC WAVE SCATTERING PROBLEM , 2012 .

[33]  Joseph E. Pasciak,et al.  Analysis of a finite element PML approximation for the three dimensional time-harmonic Maxwell problem , 2008, Math. Comput..

[34]  T. Hagstrom Radiation boundary conditions for the numerical simulation of waves , 1999, Acta Numerica.

[35]  Ronald H. W. Hoppe,et al.  Finite element methods for Maxwell's equations , 2005, Math. Comput..

[36]  Bo Wang,et al.  Fast and Accurate Computation of Time-Domain Acoustic Scattering Problems with Exact Nonreflecting Boundary Conditions , 2011, SIAM J. Appl. Math..

[37]  Zhiming,et al.  ON MAXWELL EQUATIONS WITH THE TRANSPARENT BOUNDARY CONDITION , 2008 .

[38]  Julien Diaz,et al.  A time domain analysis of PML models in acoustics , 2006 .

[39]  Zhiming Chen,et al.  An adaptive perfectly matched layer technique for 3-D time-harmonic electromagnetic scattering problems , 2007, Math. Comput..

[40]  Jiaqing Yang,et al.  Analysis of a time-dependent fluid-solid interaction problem above a local rough surface , 2018, Science China Mathematics.