Electronic structure and magnetism of epitaxial Ni–Mn–Ga(-Co) thin films with partial disorder: a view across the phase transition

The influence of Co-doping in off-stoichiometric Ni–Mn–Ga and Ni–Mn–Ga–Co thin films on the magnetic coupling of the atoms is investigated with x-ray magnetic circular dichroism in both the martensitic as well as austenitic phase, respectively. Additionally, first principles calculations were performed to compare the experimentally obtained absorption spectra with theoretical predictions. Calculated exchange constants and density of states for the different atomic sites underline the large influence of chemical and magnetic order on the magnetocaloric properties of the material.

[1]  R. Pentcheva,et al.  Ordering tendencies and electronic properties in quaternary Heusler derivatives , 2017, 1704.08100.

[2]  Subhradip Ghosh,et al.  Interplay of phase sequence and electronic structure in the modulated martensites of Mn 2 NiGa from first-principles calculations , 2017, 1703.06705.

[3]  R. Dronskowski,et al.  First-Principles and Monte Carlo Studies of Magnetocaloric Effects , 2016 .

[4]  M. Farle,et al.  Shell-ferromagnetism of nano-Heuslers generated by segregation under magnetic field , 2016, Scientific Reports.

[5]  M. Acet,et al.  Ab initio Prediction of Martensitic and Intermartensitic Phase Boundaries in Ni-Mn-Ga. , 2016, Physical review letters.

[6]  Heiko Wende,et al.  Magnetic ordering in magnetic shape memory alloy Ni-Mn-In-Co , 2015 .

[7]  L. Schultz,et al.  Epitaxial Ni-Mn-Ga-Co thin films on PMN-PT substrates for multicaloric applications , 2015 .

[8]  L. Schultz,et al.  Field-temperature phase diagrams of freestanding and substrate-constrained epitaxial Ni-Mn-Ga-Co films for magnetocaloric applications , 2015 .

[9]  C. Felser,et al.  Magnetism in tetragonal manganese-rich Heusler compounds , 2015, 1506.03735.

[10]  I. Dincer,et al.  Structure and giant inverse magnetocaloric effect of epitaxial Ni-Co-Mn-Al films , 2014, 1410.8583.

[11]  Subhradip Ghosh,et al.  Anti-site disorder and improved functionality of Mn2NiX (X = Al, Ga, In, Sn) inverse Heusler alloys , 2014, 1410.1690.

[12]  P. Entel,et al.  Interacting magnetic cluster‐spin glasses and strain glasses in Ni–Mn based Heusler structured intermetallics , 2014 .

[13]  K. Priolkar Role of local disorder in martensitic and magnetic interactions in Ni–Mn based ferromagnetic shape memory alloys , 2014 .

[14]  Jie Sun,et al.  Ab Initio and Monte Carlo Approaches For the Magnetocaloric Effect in Co- and In-Doped Ni-Mn-Ga Heusler Alloys , 2014, Entropy.

[15]  Simone Fabbrici,et al.  Co and In Doped Ni-Mn-Ga Magnetic Shape Memory Alloys: A Thorough Structural, Magnetic and Magnetocaloric Study , 2014, Entropy.

[16]  A. Grunebohm,et al.  First-principles calculation of the instability leading to giant inverse magnetocaloric effects , 2014, 1401.8148.

[17]  L. Schultz,et al.  Electronic structure of the austenitic and martensitic state of magnetocaloric Ni-Mn-In Heusler alloy films , 2013 .

[18]  S. Emura,et al.  Antiferromagnetic exchange interactions in the Ni 2 Mn 1.4 In 0.6 ferromagnetic Heusler alloy , 2013, 1304.5580.

[19]  N. Singh,et al.  Complex magnetic ordering as a driving mechanism of multifunctional properties of Heusler alloys from first principles , 2013 .

[20]  P. Entel,et al.  First-principles investigation of chemical and structural disorder in magnetic Ni 2 Mn 1 + x Sn 1 − x Heusler alloys , 2012 .

[21]  L. Schultz,et al.  The Role of Adaptive Martensite in Magnetic Shape Memory Alloys , 2012 .

[22]  Oliver Gutfleisch,et al.  Giant magnetocaloric effect driven by structural transitions. , 2012, Nature materials.

[23]  P. Schattschneider,et al.  Thickness dependence of the martensitic transformation, magnetism, and magnetoresistance in epitaxial Ni-Mn-Sn ultrathin films , 2012 .

[24]  L. Schultz,et al.  Growth of sputter-deposited metamagnetic epitaxial Ni-Co-Mn-In films , 2012 .

[25]  R. James,et al.  Small-angle Neutron Scattering Study of Magnetic Ordering and Inhomogeneity Across the Martensitic Phase Transformation in Ni50-xCoxMn40Sn10 Alloys , 2012 .

[26]  M. Cococcioni,et al.  Origin of magnetic interactions and their influence on the structural properties of Ni2MnGa and related compounds , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[27]  M. A. Alam,et al.  Positron annihilation study of the Fermi surface of Ni2MnGa , 2012 .

[28]  C. Seguí,et al.  Composition and atomic order effects on the structural and magnetic transformations in ferromagnetic Ni–Co–Mn–Ga shape memory alloys , 2012 .

[29]  Subhradip Ghosh,et al.  First-principles investigations of the electronic structure and properties related to shape-memory behavior in Mn2NiX (X = Al,Ga,In,Sn) alloys , 2011 .

[30]  G. Jakob,et al.  Microscopic origin of magnetic anisotropy in martensitic Ni2MnGa , 2011 .

[31]  C. Esling,et al.  The effects of alloying element Co on Ni–Mn–Ga ferromagnetic shape memory alloys from first-principles calculations , 2011 .

[32]  E. Şaşıoğlu,et al.  Structural-induced antiferromagnetism in Mn-based full Heusler alloys: The case of Ni2MnAl , 2011 .

[33]  J. Feuchtwanger,et al.  Magnetic moment and chemical order in off-stoichiometric Ni–Mn–Ga ferromagnetic shape memory alloys , 2011 .

[34]  H. Ebert,et al.  First-principles and Monte Carlo study of magnetostructural transition and magnetocaloric properties of Ni2+xMn1−xGa , 2010 .

[35]  J. Pérez-Landazábal,et al.  Entropy change linked to the magnetic field induced martensitic transformation in a Ni–Mn–In–Co shape memory alloy , 2010 .

[36]  T. Miyamoto,et al.  Phase stability and magnetic properties of Ni50Mn50-xInx Heusler-type alloys , 2010 .

[37]  C. Piamonteze,et al.  Accuracy of the spin sum rule in XMCD for the transition-metal L edges from manganese to copper , 2009 .

[38]  H. Morito,et al.  Magnetic properties of Ni 50 Mn 34.8 In 15.2 probed by Mössbauer spectroscopy , 2009 .

[39]  M. Acet,et al.  Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[40]  Michael R. Thomas,et al.  In situ studies of the martensitic transformation in epitaxial Ni–Mn–Ga films , 2009 .

[41]  J. Neugebauer,et al.  Understanding the phase transitions of the Ni2MnGa magnetic shape memory system from first principles. , 2009, Physical review letters.

[42]  P. Entel,et al.  Monte Carlo study of the influence of antiferromagnetic exchange interactions on the phase transitions of ferromagnetic Ni-Mn-X alloys (X=In,Sn,Sb) , 2008 .

[43]  J. Lyubina,et al.  Reversibility of magnetostructural transition and associated magnetocaloric effect in Ni–Mn–In–Co , 2008 .

[44]  P. Entel,et al.  Shape Memory Alloys: A Summary of Recent Achievements , 2008 .

[45]  P. Littlewood,et al.  Combined experimental and theoretical investigation of the premartensitic transition in Ni2MnGa. , 2008, Physical review letters.

[46]  G. Jakob,et al.  Correlation of electronic structure and martensitic transition in epitaxialNi2MnGafilms , 2007 .

[47]  Baoshun Zhang,et al.  Realization of magnetic field-induced reversible martensitic transformation in NiCoMnGa alloys , 2007 .

[48]  S. R. Barman,et al.  Martensitic transition, ferrimagnetism and Fermi surface nesting in Mn2NiGa , 2007, 0707.2133.

[49]  X. Moya,et al.  Effect of Co and Fe on the inverse magnetocaloric properties of Ni-Mn-Sn , 2007, 0707.0360.

[50]  K. Ishida,et al.  Martensitic and Magnetic Transformation Behaviors in Heusler-Type NiMnIn and NiCoMnIn Metamagnetic Shape Memory Alloys , 2007 .

[51]  J. Xiao,et al.  Physical and electronic structure and magnetism of Mn2NiGa: Experiment and density-functional theory calculations , 2006 .

[52]  I. Turek,et al.  Exchange interactions and Curie temperatures in Ni2-xMnSb alloys : First-principles study , 2006 .

[53]  P. H. Dederichs,et al.  Electronic structure and Slater–Pauling behaviour in half-metallic Heusler alloys calculated from first principles , 2006 .

[54]  Peter Entel,et al.  Modelling the phase diagram of magnetic shape memory Heusler alloys , 2006 .

[55]  K. Burke,et al.  Measuring the kernel of time-dependent density functional theory with x-ray absorption spectroscopy of transition metals. , 2005, Physical review letters.

[56]  P. Dederichs,et al.  Introduction to half-metallic Heusler alloys: Electronic Structure and Magnetic Properties , 2005, cond-mat/0510276.

[57]  L. Sandratskii,et al.  Exchange interactions and temperature dependence of magnetization in half-metallic Heusler alloys , 2005, cond-mat/0507697.

[58]  X. Moya,et al.  Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys , 2005, Nature materials.

[59]  L. Sandratskii,et al.  Pressure dependence of the Curie temperature in Ni 2 MnSn Heusler alloy: A first-principles study , 2005, cond-mat/0504644.

[60]  H. Wende Recent advances in x-ray absorption spectroscopy , 2004 .

[61]  R. Dronskowski,et al.  Electronic structure and magnetic exchange coupling in ferromagnetic full Heusler alloys , 2004, cond-mat/0406588.

[62]  L. Sandratskii,et al.  First-principles calculation of the intersublattice exchange interactions and Curie temperatures of the full Heusler alloysNi2MnX(X=Ga,In,Sn,Sb) , 2004, cond-mat/0404162.

[63]  A. Scherz,et al.  Fine structure of X-ray magnetic circular dichroism for early 3d transition metals , 2004 .

[64]  A. D. Corso,et al.  First-principles study of lattice instabilities in ferromagnetic Ni2MnGa , 2003, cond-mat/0304349.

[65]  R. Nieminen,et al.  First-principles investigation of phonon softenings and lattice instabilities in the shape-memory system Ni2MnGa , 2003, cond-mat/0304315.

[66]  A. Scherz,et al.  Relation between L-2,L-3 XMCD and the magnetic ground-state properties for the early 3d element V , 2002 .

[67]  Yongbin Lee,et al.  Generalized susceptibility of the magnetic shape-memory alloy Ni 2 MnGa , 2002 .

[68]  R. Nieminen,et al.  Ab initio study of tetragonal variants in Ni2MnGa alloy , 2002 .

[69]  N. Papanikolaou,et al.  Origin and properties of the gap in the half-ferromagnetic Heusler alloys , 2002, cond-mat/0203534.

[70]  K. Ziebeck,et al.  Direct observation of a band Jahn-Teller effect in the martensitic phase transition of Ni2MnGa , 1999 .

[71]  R. Dronskowski,et al.  Ferromagnetism in Transition Metals: A Chemical Bonding Approach. , 1999, Angewandte Chemie.

[72]  I. Naumov,et al.  Electronic structure and instability of Ni2MnGa , 1999 .

[73]  Risto M. Nieminen,et al.  Structural properties of magnetic Heusler alloys , 1999 .

[74]  V. Chernenko Compositional instability of β-phase in Ni-Mn-Ga alloys , 1999 .

[75]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[76]  Shapiro,et al.  Precursor effects and premartensitic transformation in Ni2MnGa. , 1996, Physical review. B, Condensed matter.

[77]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[78]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[79]  P. Blöchl Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[80]  V. A. Gubanov,et al.  Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys , 1987 .

[81]  P. J. Webster,et al.  Magnetic order and phase transformation in Ni2MnGa , 1984 .

[82]  Takashi Fukuda,et al.  Disorder and Strain-Induced Complexity in Functional Materials , 2012 .

[83]  F. Bolzoni,et al.  From direct to inverse giant magnetocaloric effect in Co-doped NiMnGa multifunctional alloys , 2011 .

[84]  ed. Hugues DreyssouA Electronic structure and physical properties of solids , 2000 .

[85]  Hubert Ebert,et al.  Fully Relativistic Band Structure Calculations for Magnetic Solids - Formalism and Application , 1999 .