Stable discretisations of high-order discontinuous Galerkin methods on equidistant and scattered points

In this work, we propose and investigate stable high-order collocation-type discretisations of the discontinuous Galerkin method on equidistant and scattered collocation points. We do so by incorporating the concept of discrete least squares into the discontinuous Galerkin framework. Discrete least squares approximations allow us to construct stable and high-order accurate approximations on arbitrary collocation points, while discrete least squares quadrature rules allow us their stable and exact numerical integration. Both methods are computed efficiently by using bases of discrete orthogonal polynomials. Thus, the proposed discretisation generalises known classes of discretisations of the discontinuous Galerkin method, such as the discontinuous Galerkin collocation spectral element method. We are able to prove conservation and linear $L^2$-stability of the proposed discretisations. Finally, numerical tests investigate their accuracy and demonstrate their extension to nonlinear conservation laws, systems, longtime simulations, and a variable coefficient problem in two space dimensions.

[1]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[2]  David I. Ketcheson,et al.  Highly Efficient Strong Stability-Preserving Runge-Kutta Methods with Low-Storage Implementations , 2008, SIAM J. Sci. Comput..

[3]  Jan Nordström,et al.  Error Boundedness of Discontinuous Galerkin Spectral Element Approximations of Hyperbolic Problems , 2017, J. Sci. Comput..

[4]  John A. Trangenstein,et al.  Numerical Solution of Hyperbolic Partial Differential Equations , 2009 .

[5]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[6]  Jan Nordström,et al.  Boundary and Interface Conditions for High-Order Finite-Difference Methods Applied to the Euler and Navier-Stokes Equations , 1999 .

[7]  Gregor Gassner,et al.  Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations , 2016, J. Comput. Phys..

[8]  T. Sonar,et al.  An extended Discontinuous Galerkin and Spectral Difference Method with modal filtering , 2013 .

[9]  Frank Chorlton Summation by Parts , 1998 .

[10]  A. Gelb,et al.  The discrete orthogonal polynomial least squares method for approximation and solving partial differential equations , 2008 .

[11]  Philipp Öffner,et al.  Error Boundedness of Discontinuous Galerkin Methods with Variable Coefficients , 2018, J. Sci. Comput..

[12]  A. Stroud,et al.  Approximate Calculation of Integrals , 1962 .

[13]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[14]  Élise Le Mélédo,et al.  On the Connection between Residual Distribution Schemes and Flux Reconstruction , 2018, 1807.01261.

[15]  Robert Michael Kirby,et al.  Filtering in Legendre spectral methods , 2008, Math. Comput..

[16]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[17]  Jesse Chan,et al.  Efficient Entropy Stable Gauss Collocation Methods , 2018, SIAM J. Sci. Comput..

[18]  Daan Huybrechs,et al.  Stable high-order quadrature rules with equidistant points , 2009, J. Comput. Appl. Math..

[19]  A. Bressan Hyperbolic systems of conservation laws : the one-dimensional Cauchy problem , 2000 .

[20]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .

[21]  P. Olsson Summation by parts, projections, and stability. II , 1995 .

[22]  Chi-Wang Shu,et al.  The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .

[23]  Lloyd N. Trefethen,et al.  Impossibility of Fast Stable Approximation of Analytic Functions from Equispaced Samples , 2011, SIAM Rev..

[24]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[25]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[26]  Anne Gelb,et al.  High Order Edge Sensors with ℓ1 Regularization for Enhanced Discontinuous Galerkin Methods , 2019, SIAM J. Sci. Comput..

[27]  Gene H. Golub,et al.  Matrix computations , 1983 .

[28]  Claus-Dieter Munz,et al.  Shock Capturing for Discontinuous Galerkin Methods using Finite Volume Subcells , 2014 .

[29]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[30]  Hendrik Ranocha,et al.  Stability of correction procedure via reconstruction with summation-by-parts operators for Burgers' equation using a polynomial chaos approach , 2017, ESAIM: Mathematical Modelling and Numerical Analysis.

[31]  Hervé Vandeven,et al.  Family of spectral filters for discontinuous problems , 1991 .

[32]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[33]  J. S. Hesthaven,et al.  Viscous Shock Capturing in a Time-Explicit Discontinuous Galerkin Method , 2011, 1102.3190.

[34]  Gregor Gassner,et al.  An Energy Stable Discontinuous Galerkin Spectral Element Discretization for Variable Coefficient Advection Problems , 2014, SIAM J. Sci. Comput..

[35]  Roger B. Nelsen,et al.  Summation by Parts , 1992 .

[36]  Eitan Tadmor,et al.  From Semidiscrete to Fully Discrete: Stability of Runge-Kutta Schemes by The Energy Method , 1998, SIAM Rev..

[37]  R. Abgrall,et al.  High Order Schemes for Hyperbolic Problems Using Globally Continuous Approximation and Avoiding Mass Matrices , 2017, J. Sci. Comput..

[38]  Philipp Birken,et al.  Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.

[39]  David I. Ketcheson,et al.  Strong stability preserving runge-kutta and multistep time discretizations , 2011 .

[40]  Andreas Meister,et al.  A positivity preserving and well-balanced DG scheme using finite volume subcells in almost dry regions , 2016, Appl. Math. Comput..

[41]  Gregor Gassner,et al.  A Skew-Symmetric Discontinuous Galerkin Spectral Element Discretization and Its Relation to SBP-SAT Finite Difference Methods , 2013, SIAM J. Sci. Comput..

[42]  Michael Dumbser,et al.  A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws , 2014, J. Comput. Phys..

[43]  Philipp Öffner,et al.  Summation-by-parts operators for correction procedure via reconstruction , 2015, J. Comput. Phys..

[44]  Chi-Wang Shu,et al.  The Runge-Kutta local projection $P^1$-discontinuous-Galerkin finite element method for scalar conservation laws , 1988, ESAIM: Mathematical Modelling and Numerical Analysis.

[45]  H. Kreiss,et al.  Finite Element and Finite Difference Methods for Hyperbolic Partial Differential Equations , 1974 .

[46]  Chi-Wang Shu,et al.  On a cell entropy inequality for discontinuous Galerkin methods , 1994 .

[47]  Jan Glaubitz,et al.  Shock Capturing by Bernstein Polynomials for Scalar Conservation Laws , 2019, Appl. Math. Comput..

[48]  George Em Karniadakis,et al.  De-aliasing on non-uniform grids: algorithms and applications , 2003 .

[49]  M. W. Wilson,et al.  Discrete least squares and quadrature formulas , 1970 .

[50]  Philipp Öffner,et al.  Stability of artificial dissipation and modal filtering for flux reconstruction schemes using summation-by-parts operators , 2018, Applied Numerical Mathematics.

[51]  Rémi Abgrall,et al.  A general framework to construct schemes satisfying additional conservation relations. Application to entropy conservative and entropy dissipative schemes , 2017, J. Comput. Phys..

[52]  Walter Gautschi,et al.  Numerical Analysis , 1978, Mathemagics: A Magical Journey Through Advanced Mathematics.

[53]  Antonio Huerta,et al.  A simple shock‐capturing technique for high‐order discontinuous Galerkin methods , 2012 .

[54]  Alberto Costa Nogueira,et al.  Smooth and Compactly Supported Viscous Sub-cell Shock Capturing for Discontinuous Galerkin Methods , 2018, J. Sci. Comput..

[55]  Rémi Abgrall,et al.  How to Avoid Mass Matrix for Linear Hyperbolic Problems , 2016, ENUMATH.

[56]  M. Wayne Wilson Necessary and Sufficient Conditions for Equidistant Quadrature Formula , 1970 .

[57]  Philipp Öffner,et al.  Application of modal filtering to a spectral difference method , 2016, Math. Comput..

[58]  Gregor Gassner,et al.  A well balanced and entropy conservative discontinuous Galerkin spectral element method for the shallow water equations , 2016, Appl. Math. Comput..

[59]  W. Gautschi Orthogonal Polynomials: Computation and Approximation , 2004 .

[60]  David A. Kopriva,et al.  Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers , 2009 .

[61]  J. Peraire,et al.  Sub-Cell Shock Capturing for Discontinuous Galerkin Methods , 2006 .

[62]  B. Strand Summation by parts for finite difference approximations for d/dx , 1994 .

[63]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..