On short interval expansion of Rényi entropy

A bstractRényi entanglement entropy provides a new window to study the AdS/CFT correspondence. In this paper we consider the short interval expansion of Rényi entanglement entropy in two-dimensional conformal field theory. This amounts to do the operator product expansion of the twist operators. We focus on the vacuum Verma module and consider the quasiprimary operators constructed from the stress tensors. After obtaining the expansion coefficients of the twist operators to level 6 in vacuum Verma module, we compute the leading contributions to the Rényi entropy, to order 6 in the short interval expansion. In the case of one short interval on cylinder, we reproduce the first several leading contributions to the Rényi entropy. In the case of two short disjoint intervals with a small cross ratio x, we obtain not only the classical and 1-loop quantum contributions to the Rényi entropy to order x6, both of which are in perfect match with the ones found in gravity, but also the leading 1/c contributions, which corresponds to 2-loop corrections in the bulk.

[1]  S. Solodukhin,et al.  Distributional Geometry of Squashed Cones , 2013, 1306.4000.

[2]  T. Takayanagi,et al.  Aspects of Holographic Entanglement Entropy , 2006, hep-th/0605073.

[3]  Aitor Lewkowycz,et al.  Generalized gravitational entropy , 2013, 1304.4926.

[4]  J. Boer,et al.  Holographic entanglement entropy in Lovelock gravities , 2011, 1101.5781.

[5]  Marc Henneaux,et al.  Central charges in the canonical realization of asymptotic symmetries: An example from three dimensional gravity , 1986 .

[6]  Ralph Blumenhagen,et al.  Introduction to Conformal Field Theory , 2009 .

[7]  Tadashi Takayanagi,et al.  Holographic entanglement entropy: an overview , 2009, 0905.0932.

[8]  C. S.,et al.  Conformal Field Theory , ( 2 + 1 )-Dimensional Gravity , and the BTZ Black Hole , 2005 .

[9]  On geometric entropy , 1994, hep-th/9401072.

[10]  D. Petz Quantum Information Theory and Quantum Statistics , 2007 .

[11]  J. Cardy,et al.  Entanglement entropy of two disjoint intervals in conformal field theory , 2009, 0905.2069.

[12]  A. Polyakov,et al.  Gauge Theory Correlators from Non-Critical String Theory , 1998, hep-th/9802109.

[13]  R. Gopakumar,et al.  Minimal model holography , 2012, 1207.6697.

[14]  T. Takayanagi,et al.  Holographic derivation of entanglement entropy from the anti-de Sitter space/conformal field theory correspondence. , 2006, Physical review letters.

[15]  J. Maldacena The Large-N Limit of Superconformal Field Theories and Supergravity , 1997, hep-th/9711200.

[16]  J. Cardy,et al.  Entanglement entropy of two disjoint intervals in conformal field theory: II , 2010, 1011.5482.

[17]  Edward Witten,et al.  (2+1)-Dimensional Gravity as an Exactly Soluble System , 1988 .

[18]  E. Witten,et al.  Quantum gravity partition functions in three dimensions , 2007, 0712.0155.

[19]  Bin Chen,et al.  Note on generalized gravitational entropy in Lovelock gravity , 2013, 1305.6767.

[20]  Aitor Lewkowycz,et al.  Quantum corrections to holographic entanglement entropy , 2013, 1307.2892.

[21]  J. Cardy,et al.  Entanglement entropy and conformal field theory , 2009, 0905.4013.

[22]  Arpan Bhattacharyya,et al.  On generalized gravitational entropy, squashed cones and holography , 2013, 1308.5748.

[23]  T. Takayanagi,et al.  Holographic Derivation of Entanglement Entropy from AdS/CFT , 2006, hep-th/0603001.

[24]  Conformal field theory, (2 + 1)-dimensional gravity and the BTZ black hole , 2005, gr-qc/0503022.

[25]  E. Witten Anti-de Sitter space and holography , 1998, hep-th/9802150.

[26]  F. Gliozzi,et al.  Entanglement entropy of two disjoint intervals from fusion algebra of twist fields , 2011, 1112.1225.

[27]  Thomas Hartman Entanglement Entropy at Large Central Charge , 2013, 1303.6955.

[28]  J. Cardy,et al.  Entanglement entropy and quantum field theory , 2004, hep-th/0405152.

[29]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[30]  A. Maloney,et al.  One-loop Partition Functions of 3D Gravity , 2008, 0804.1773.

[31]  Pierre Mathieu,et al.  Conformal Field Theory , 1999 .

[32]  T. Takayanagi Entanglement entropy from a holographic viewpoint , 2012, 1204.2450.

[33]  T. Faulkner The Entanglement Renyi Entropies of Disjoint Intervals in AdS/CFT , 2013, 1303.7221.

[34]  Robert C. Myers,et al.  Towards a derivation of holographic entanglement entropy , 2011, 1102.0440.

[35]  Xi Dong,et al.  Holographic entanglement beyond classical gravity , 2013, 1306.4682.

[36]  J. Cardy Some results on the mutual information of disjoint regions in higher dimensions , 2013, 1304.7985.

[37]  Arpan Bhattacharyya,et al.  Entanglement entropy in higher derivative holography , 2013, 1305.6694.

[38]  Matthew Headrick,et al.  Entanglement Renyi entropies in holographic theories , 2010, 1006.0047.

[39]  D. Fursaev Proof of the holographic formula for entanglement entropy , 2006, hep-th/0606184.

[40]  R. Blumenhagen,et al.  Introduction to Conformal Field Theory: With Applications to String Theory , 2009 .

[41]  R. Myers,et al.  On holographic entanglement entropy and higher curvature gravity , 2011, 1101.5813.