Thyroid hormone actions and membrane fluidity Blocking action thyroxine on triiodothyronine effect

[1]  R. Farías,et al.  Kinetic modifications of the acetylcholinesterase and (Ca2+ + Mg2+)-ATPase in rat erythrocytes by cholesterol feeding. , 1976, The Journal of nutrition.

[2]  R. Farías,et al.  Insulin decreases bacterial membrane fluidity. Is it a general event in its action? , 1976, Biochemical and biophysical research communications.

[3]  R. Farías,et al.  Multiple forms of acetylcholinesterase from rat erythrocytes. Effect of fat-free diet. , 1976, Biochimica et biophysica acta.

[4]  Y. Tashima Removal of protein interference in the Fiske-Subbarow method by sodium dodecyl sulfate. , 1975, Analytical biochemistry.

[5]  P. Larsen,et al.  Effect of acute exposure to cold on the activity of the hypothalamic-pituitary-thyroid system. , 1975, Endocrinology.

[6]  R. Farías,et al.  Hormone action and membrane fluidity: effect of insulin and cortisol on the Hill coefficients of rat erythrocyte membrane-bound acetylcholinesterase and (Na+ + K+)-ATPase. , 1975, Biochemical and biophysical research communications.

[7]  T. Visser,et al.  Conversion of thyroxine into tri-iodothyronine by rat liver homogenate. , 1975, The Biochemical journal.

[8]  R. Farías,et al.  Kinetic changes of the erythrocyte (Mg2+ + Ca2+)-adenosine triphosphatase of rats fed different fat-supplemented diets. , 1975, The Journal of biological chemistry.

[9]  F. Siñeriz,et al.  The convenience of the use of allosteric "probes" for the study of lipid--protein interactions in biological membranes: thermodynamic considerations. , 1975, Journal of theoretical biology.

[10]  T. Ranta Effect of dexamethasone on the secretion of thyrotropin in the rat: dose and time relations. , 1975, Endocrinology.

[11]  L. Malgor,et al.  Direct effects of thyroid hormones on bone marrow erythroid cells of rats. , 1975, Blood.

[12]  G. Smith,et al.  Cycloleucine transport in isolated rat thymocytes: in vitro effects of triiodothyronine and thyroxine. , 1975, Endocrinology.

[13]  J. Buchanan,et al.  Control of oxygen consumption in liver slices from normal and T4-treated rats. , 1974, Endocrinology.

[14]  F. Siñeriz,et al.  Regulation by Membrane Fluidity of the Allosteric Behavior of the (Ca2+)-Adenosine Triphosphatase from Escherichia coli , 1973, Journal of bacteriology.

[15]  R. Farías,et al.  Membrane lipid fatty acids and regulation of membrane-bound enzymes. Allosteric behaviour of erythrocyte Mg 2+ -ATPase, (Na + +K + )-ATPase and acetylcholinesterase from rats fed different fat-supplemented diets. , 1973, Biochimica et biophysica acta.

[16]  D. Solomon,et al.  Thyroxine: just a prohormone or a hormone too? , 1973, The Journal of clinical endocrinology and metabolism.

[17]  M. Surks,et al.  Determination of iodothyronine absorption and conversion of L-thyroxine (T 4 ) to L-triiodothyronine (T 3 ) using turnover rate techniques. , 1973, The Journal of clinical investigation.

[18]  R. Farías,et al.  The allosteric transitions from membrane-bound enzymes: behavior of erythrocyte acetylcholinesterase from fat-deficient rats. , 1972, Biochimica et biophysica acta.

[19]  M. Surks,et al.  Propylthiouracil inhibits the conversion of L-thyroxine to L-triiodothyronine. An explanation of the antithyroxine effect of propylthiouracil and evidence supporting the concept that triiodothyronine is the active thyroid hormone. , 1972, The Journal of clinical investigation.

[20]  R. Farías,et al.  Effect of Membrane Lipid Composition on the Allosteric Inhibition by Sodium of the (Ca2+)-Adenosine Triphosphatase from Escherichia coli , 1972, Journal of bacteriology.

[21]  J. Suko Alterations of Ca2+ uptake and Ca2+-activated ATPase of cardiac sarcoplasmic reticulum in hyper- and hypothyroidism , 1971 .

[22]  F. Ismail-Beigi,et al.  Mechanism of thyroid calorigenesis: role of active sodium transport. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[23]  E. Newman,et al.  Conversion of Thyroxine to Triiodothyronine in Normal Human Subjects , 1970, Science.

[24]  R. Farías,et al.  The effect of fat deprivation on the allosteric inhibition by fluoride of the (Mg2+)-ATPase and (Na+ and K+)-ATPase from rat erythrocytes. , 1970, Archives of biochemistry and biophysics.

[25]  L. Braverman,et al.  Conversion of thyroxine (T4) to triiodothyronine (T3) in athyreotic human subjects. , 1970, The Journal of clinical investigation.

[26]  E. Gruenstein,et al.  A molecular mechanism of action of thyroxin: modification of membrane phospholipid by iodine. , 1970, Journal of theoretical biology.

[27]  A. C. Carter,et al.  Relationship of red blood cell 131-I-L-triiodothyronine binding coefficient and cell maturation. 3. Binding to mature erythrocyte and reticulocyte cell membranes. , 1968, Endocrinology.

[28]  John L. Ingraham,et al.  EFFECT OF TEMPERATURE ON THE COMPOSITION OF FATTY ACIDS IN ESCHERICHIA COLI , 1962, Journal of bacteriology.

[29]  J. Lerman THE PHYSIOLOGIC ACTIVITY OF Z-TRIIODOTHYRONINE* , 1953 .

[30]  W. Trotter,et al.  Effect of 3:5:3'-L-triiodothyronine in myxoedema. , 1952, Lancet.