Inference With Deep Generative Priors in High Dimensions

Deep generative priors offer powerful models for complex-structured data, such as images, audio, and text. Using these priors in inverse problems typically requires estimating the input and/or hidden signals in a multi-layer deep neural network from observation of its output. While these approaches have been successful in practice, rigorous performance analysis is complicated by the non-convex nature of the underlying optimization problems. This paper presents a novel algorithm, Multi-Layer Vector Approximate Message Passing (ML-VAMP), for inference in multi-layer stochastic neural networks. ML-VAMP can be configured to compute maximum a priori (MAP) or approximate minimum mean-squared error (MMSE) estimates for these networks. We show that the performance of ML-VAMP can be exactly predicted in a certain high-dimensional random limit. Furthermore, under certain conditions, ML-VAMP yields estimates that achieve the minimum (i.e., Bayes-optimal) MSE as predicted by the replica method. In this way, ML-VAMP provides a computationally efficient method for multi-layer inference with an exact performance characterization and testable conditions for optimality in the large-system limit.

[1]  Ping Li,et al.  On Random Deep Weight-Tied Autoencoders: Exact Asymptotic Analysis, Phase Transitions, and Implications to Training , 2018, ICLR.

[2]  Bingsheng He,et al.  Application of the Strictly Contractive Peaceman-Rachford Splitting Method to Multi-Block Separable Convex Programming , 2016 .

[3]  Andrea Vedaldi,et al.  Understanding deep image representations by inverting them , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  Ruslan Salakhutdinov,et al.  Learning Deep Generative Models , 2009 .

[5]  Richard G. Baraniuk,et al.  Learned D-AMP: Principled Neural Network based Compressive Image Recovery , 2017, NIPS.

[6]  Jaehoon Lee,et al.  Bayesian Deep Convolutional Networks with Many Channels are Gaussian Processes , 2018, ICLR.

[7]  Daan Wierstra,et al.  Stochastic Backpropagation and Approximate Inference in Deep Generative Models , 2014, ICML.

[8]  Guillermo Sapiro,et al.  Image inpainting , 2000, SIGGRAPH.

[9]  Florent Krzakala,et al.  Variational free energies for compressed sensing , 2014, 2014 IEEE International Symposium on Information Theory.

[10]  Sundeep Rangan,et al.  Plug in estimation in high dimensional linear inverse problems a rigorous analysis , 2018, NeurIPS.

[11]  Rama Chellappa,et al.  Task-Aware Compressed Sensing with Generative Adversarial Networks , 2018, AAAI.

[12]  Sundeep Rangan,et al.  AMP-Inspired Deep Networks for Sparse Linear Inverse Problems , 2016, IEEE Transactions on Signal Processing.

[13]  Dustin G. Mixon,et al.  SUNLayer: Stable denoising with generative networks , 2018, ArXiv.

[14]  Nicolas Macris,et al.  The mutual information in random linear estimation , 2016, 2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[15]  Vladislav Voroninski,et al.  Global Guarantees for Enforcing Deep Generative Priors by Empirical Risk , 2017, IEEE Transactions on Information Theory.

[16]  Sundeep Rangan,et al.  Generalized approximate message passing for estimation with random linear mixing , 2010, 2011 IEEE International Symposium on Information Theory Proceedings.

[17]  Tom Minka,et al.  Expectation Propagation for approximate Bayesian inference , 2001, UAI.

[18]  Aaron C. Courville,et al.  Adversarially Learned Inference , 2016, ICLR.

[19]  Sundeep Rangan,et al.  Expectation consistent approximate inference: Generalizations and convergence , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[20]  Reinhard Heckel,et al.  A Provably Convergent Scheme for Compressive Sensing Under Random Generative Priors , 2018, Journal of Fourier Analysis and Applications.

[21]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[22]  Andrea Montanari,et al.  Message-passing algorithms for compressed sensing , 2009, Proceedings of the National Academy of Sciences.

[23]  Alexandros G. Dimakis,et al.  Compressed Sensing with Deep Image Prior and Learned Regularization , 2018, ArXiv.

[24]  P. McCullagh,et al.  Generalized Linear Models, 2nd Edn. , 1990 .

[25]  Nicolas Macris,et al.  Entropy and mutual information in models of deep neural networks , 2018, NeurIPS.

[26]  Sundeep Rangan,et al.  Inference in Deep Networks in High Dimensions , 2017, 2018 IEEE International Symposium on Information Theory (ISIT).

[27]  Sundeep Rangan,et al.  Vector approximate message passing , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[28]  Yee Whye Teh,et al.  Bayesian Learning via Stochastic Gradient Langevin Dynamics , 2011, ICML.

[29]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[30]  Ramji Venkataramanan,et al.  Finite Sample Analysis of Approximate Message Passing Algorithms , 2016, IEEE Transactions on Information Theory.

[31]  Bingsheng He,et al.  A Strictly Contractive Peaceman-Rachford Splitting Method for Convex Programming , 2014, SIAM J. Optim..

[32]  Soumith Chintala,et al.  Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks , 2015, ICLR.

[33]  Philip Schniter,et al.  Learning and free energies for vector approximate message passing , 2016, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[34]  Ole Winther,et al.  S-AMP: Approximate message passing for general matrix ensembles , 2014, 2014 IEEE Information Theory Workshop (ITW 2014).

[35]  William T. Freeman,et al.  Constructing free-energy approximations and generalized belief propagation algorithms , 2005, IEEE Transactions on Information Theory.

[36]  Alexandros G. Dimakis,et al.  Compressed Sensing using Generative Models , 2017, ICML.

[37]  Radford M. Neal MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.

[38]  Chinmay Hegde,et al.  Solving Linear Inverse Problems Using Gan Priors: An Algorithm with Provable Guarantees , 2018, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[39]  Andrea Vedaldi,et al.  Deep Image Prior , 2017, International Journal of Computer Vision.

[40]  Guillermo Sapiro,et al.  Deep Neural Networks with Random Gaussian Weights: A Universal Classification Strategy? , 2015, IEEE Transactions on Signal Processing.

[41]  Florent Krzakala,et al.  Statistical physics-based reconstruction in compressed sensing , 2011, ArXiv.

[42]  Galen Reeves Additivity of information in multilayer networks via additive Gaussian noise transforms , 2017, 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[43]  Nicolas Macris,et al.  Mutual Information and Optimality of Approximate Message-Passing in Random Linear Estimation , 2017, IEEE Transactions on Information Theory.

[44]  Nicolas Macris,et al.  Optimal errors and phase transitions in high-dimensional generalized linear models , 2017, Proceedings of the National Academy of Sciences.

[45]  Keigo Takeuchi,et al.  Rigorous Dynamics of Expectation-Propagation-Based Signal Recovery from Unitarily Invariant Measurements , 2020, IEEE Transactions on Information Theory.

[46]  Andrea Montanari,et al.  The dynamics of message passing on dense graphs, with applications to compressed sensing , 2010, 2010 IEEE International Symposium on Information Theory.

[47]  Alexandros G. Dimakis,et al.  Inverting Deep Generative models, One layer at a time , 2019, NeurIPS.

[48]  Yann LeCun,et al.  The Loss Surfaces of Multilayer Networks , 2014, AISTATS.

[49]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[50]  Minh N. Do,et al.  Semantic Image Inpainting with Deep Generative Models , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[51]  Richard G. Baraniuk,et al.  A deep learning approach to structured signal recovery , 2015, 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[52]  Volkan Cevher,et al.  Fixed Points of Generalized Approximate Message Passing With Arbitrary Matrices , 2016, IEEE Transactions on Information Theory.

[53]  Michael I. Jordan,et al.  Sharp Convergence Rates for Langevin Dynamics in the Nonconvex Setting , 2018, ArXiv.

[54]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[55]  David Rolnick,et al.  How to Start Training: The Effect of Initialization and Architecture , 2018, NeurIPS.

[56]  J. H. Schuenemeyer,et al.  Generalized Linear Models (2nd ed.) , 1992 .

[57]  Geoffrey E. Hinton,et al.  Bayesian Learning for Neural Networks , 1995 .

[58]  Chun-Liang Li,et al.  One Network to Solve Them All — Solving Linear Inverse Problems Using Deep Projection Models , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[59]  Kuldeep Kumar,et al.  Robust Statistics, 2nd edn , 2011 .

[60]  Hod Lipson,et al.  Understanding Neural Networks Through Deep Visualization , 2015, ArXiv.

[61]  Sundeep Rangan,et al.  Bilinear Recovery Using Adaptive Vector-AMP , 2018, IEEE Transactions on Signal Processing.

[62]  Sundeep Rangan,et al.  On the convergence of approximate message passing with arbitrary matrices , 2014, 2014 IEEE International Symposium on Information Theory.

[63]  Sundeep Rangan,et al.  Vector approximate message passing for the generalized linear model , 2016, 2016 50th Asilomar Conference on Signals, Systems and Computers.

[64]  Adel Javanmard,et al.  State Evolution for General Approximate Message Passing Algorithms, with Applications to Spatial Coupling , 2012, ArXiv.

[65]  Li Ping,et al.  Orthogonal AMP , 2016, IEEE Access.

[66]  Surya Ganguli,et al.  Deep Information Propagation , 2016, ICLR.

[67]  Alfred O. Hero,et al.  A Survey of Stochastic Simulation and Optimization Methods in Signal Processing , 2015, IEEE Journal of Selected Topics in Signal Processing.

[68]  Sundeep Rangan,et al.  Asymptotics of MAP Inference in Deep Networks , 2019, 2019 IEEE International Symposium on Information Theory (ISIT).

[69]  Minh N. Do,et al.  Semantic Image Inpainting with Perceptual and Contextual Losses , 2016, ArXiv.

[70]  Florent Krzakala,et al.  Multi-layer generalized linear estimation , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[71]  T. Blumensath,et al.  Theory and Applications , 2011 .

[72]  Truong Q. Nguyen,et al.  Correction by Projection: Denoising Images with Generative Adversarial Networks , 2018, ArXiv.

[73]  Ole Winther,et al.  Expectation Consistent Approximate Inference , 2005, J. Mach. Learn. Res..

[74]  Michael I. Jordan,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..

[75]  Galen Reeves,et al.  The replica-symmetric prediction for compressed sensing with Gaussian matrices is exact , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).