Thermal Energy Census with the Sunyaev–Zel’dovich Effect of DESI Galaxy Clusters/Groups and Its Implication on the Weak-lensing Power Spectrum

We carry out a thermal energy census of hot baryons at z < 1, by cross correlating the Planck Modified Internal Linear Combination Algorithm (MILCA) y map with 0.8 million clusters/groups selected from the Yang et al. catalog. The thermal Sunyaev–Zel’dovich effect around these clusters/groups is reliably obtained, which enables us to make our model constraints based on one-halo (1h) and two-halo (2h) contributions, respectively. (1) The total measurement signal-to-noise (S/N) of the one-halo term is 63. We constrain the Y–M relation over the halo mass range of 1013–1015 M ⊙ h −1, and find Y ∝ M α with α = 1.8 at z = 0.14 (α = 2.1 at z = 0.75). The total thermal energy of gas bound to clusters/groups increases from 0.1 meV cm−3 at z = 0.14 to 0.22 meV cm−3 at z = 0.75. (2) The 2h term is used to constrain the bias-weighted electron pressure 〈b y P e 〉. We find that 〈b y P e 〉 (in units of meV cm−3) increases from 0.24 ± 0.02 at z = 0.14 to 0.45 ± 0.02 at z = 0.75. These results lead to several implications. (i) The hot gas fraction f gas in clusters/groups monotonically increase with the halo mass, where f gas of a 1014 M ⊙ h −1 halo is ∼50% (25%) of the cosmic mean at z = 0.14 (0.75). (ii) By comparing the 1h and 2h terms, we obtain a tentative constraint on the thermal energy of unbound gas. (iii) The above results lead to significant suppression of the matter and weak-lensing power spectrum at small scales. These implications are important for astrophysics and cosmology, and we will further investigate them with improved data and gas modeling.

[1]  L. Moscardini,et al.  Exploring the Mass and Redshift Dependencies of the Cluster Pressure Profile with Stacks on Thermal Sunyaev–Zel’dovich Maps , 2023, The Astrophysical Journal Supplement Series.

[2]  Y. Huang,et al.  Halo Properties and Mass Functions of Groups/Clusters from the DESI Legacy Imaging Surveys DR9 , 2022, The Astrophysical Journal.

[3]  D. Gerdes,et al.  Constraining the Baryonic Feedback with Cosmic Shear Using the DES Year-3 Small-Scale Measurements , 2022, 2206.08591.

[4]  N. Aghanim,et al.  Gas distribution from clusters to filaments in IllustrisTNG , 2022, Astronomy &amp; Astrophysics.

[5]  J. Bartlett,et al.  Probing Hot Gas Components of the Circumgalactic Medium in Cosmological Simulations with the Thermal Sunyaev–Zel’dovich Effect , 2021, The Astrophysical Journal.

[6]  Zeyang Sun,et al.  Cross-correlation of Planck CMB lensing with DESI galaxy groups , 2021, 2109.07387.

[7]  C. Heymans,et al.  Joint constraints on cosmology and the impact of baryon feedback: Combining KiDS-1000 lensing with the thermal Sunyaev-Zeldovich effect from Planck and ACT , 2021, Astronomy & Astrophysics.

[8]  Xiaohu Yang,et al.  Detection of pairwise kSZ effect with DESI galaxy clusters and Planck , 2021, Monthly Notices of the Royal Astronomical Society.

[9]  S. Giri,et al.  Emulation of baryonic effects on the matter power spectrum and constraints from galaxy cluster data , 2021, Journal of Cosmology and Astroparticle Physics.

[10]  P. Mauskopf,et al.  The Thermal Sunyaev–Zel’dovich Effect from Massive, Quiescent 0.5 ≤ z ≤ 1.5 Galaxies , 2021, The Astrophysical Journal.

[11]  C. Heymans,et al.  Probing galaxy bias and intergalactic gas pressure with KiDS Galaxies-tSZ-CMB lensing cross-correlations , 2021, Astronomy & Astrophysics.

[12]  Hong Guo,et al.  An Extended Halo-based Group/Cluster Finder: Application to the DESI Legacy Imaging Surveys DR8 , 2020, The Astrophysical Journal.

[13]  T. Tröster,et al.  Probing the cluster pressure profile with thermal Sunyaev–Zeldovich effect and weak lensing cross-correlation , 2020, Monthly Notices of the Royal Astronomical Society.

[14]  B. M'enard,et al.  The Cosmic Thermal History Probed by Sunyaev–Zeldovich Effect Tomography , 2020, The Astrophysical Journal.

[15]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[16]  C. Heymans,et al.  A hydrodynamical halo model for weak-lensing cross correlations , 2020, Astronomy & Astrophysics.

[17]  G. Hinshaw,et al.  An analysis of galaxy cluster mis-centring using cosmological hydrodynamic simulations , 2019, Monthly Notices of the Royal Astronomical Society.

[18]  C. Hern'andez-Monteagudo,et al.  Modelling the large-scale mass density field of the universe as a function of cosmology and baryonic physics , 2019, 1911.08471.

[19]  N. Yoshida,et al.  Cross-correlation of the thermal Sunyaev–Zel’dovich effect and weak gravitational lensing: Planck and Subaru Hyper Suprime-Cam first-year data , 2019, Monthly Notices of the Royal Astronomical Society.

[20]  J. Peacock,et al.  Erratum: Tomographic measurement of the intergalactic gas pressure through galaxy-tSZ cross-correlations , 2019, Monthly Notices of the Royal Astronomical Society.

[21]  H. Hoekstra,et al.  The impact of the observed baryon distribution in haloes on the total matter power spectrum , 2019, Monthly Notices of the Royal Astronomical Society.

[22]  Johannes L. Schönberger,et al.  SciPy 1.0: fundamental algorithms for scientific computing in Python , 2019, Nature Methods.

[23]  J. Schaye,et al.  Exploring the effects of galaxy formation on matter clustering through a library of simulation power spectra , 2019, Monthly Notices of the Royal Astronomical Society.

[24]  Leo Singer,et al.  healpy: equal area pixelization and spherical harmonics transforms for data on the sphere in Python , 2019, J. Open Source Softw..

[25]  Edinburgh,et al.  The fourth data release of the Kilo-Degree Survey: ugri imaging and nine-band optical-IR photometry over 1000 square degrees , 2019, Astronomy & Astrophysics.

[26]  R. Teyssier,et al.  Quantifying baryon effects on the matter power spectrum and the weak lensing shear correlation , 2018, Journal of Cosmology and Astroparticle Physics.

[27]  C. Pichon,et al.  The impact of baryons on the matter power spectrum from the Horizon-AGN cosmological hydrodynamical simulation , 2018, Monthly Notices of the Royal Astronomical Society.

[28]  R. B. Barreiro,et al.  Planck 2018 results , 2018, Astronomy & Astrophysics.

[29]  P. Ade,et al.  First Sunyaev–Zel’dovich mapping with the NIKA2 camera: Implication of cluster substructures for the pressure profile and mass estimate , 2017, Astronomy & Astrophysics.

[30]  H. Mo,et al.  Detection of Missing Baryons in Galaxy Groups with Kinetic Sunyaev–Zel’dovich Effect , 2017, The Astrophysical Journal.

[31]  E. Komatsu,et al.  Dark energy constraints from the thermal Sunyaev–Zeldovich power spectrum , 2017, 1712.00788.

[32]  C. Pichon,et al.  Using Real and Simulated Measurements of the Thermal Sunyaev–Zel’dovich Effect to Constrain Models of AGN Feedback , 2017, The Astrophysical Journal.

[33]  H. Mo,et al.  Gas Contents of Galaxy Groups from Thermal Sunyaev–Zel’dovich Effects , 2017, 1710.06856.

[34]  C. Heymans,et al.  Probing the missing baryons with the Sunyaev-Zel’dovich effect from filaments , 2017, Astronomy & Astrophysics.

[35]  Molly S. Peeples,et al.  The Circumgalactic Medium , 2017, 1709.09180.

[36]  N. Yoshida,et al.  Investigating cluster astrophysics and cosmology with cross-correlation of the thermal Sunyaev–Zel'dovich effect and weak lensing , 2017, 1706.08972.

[37]  H. Mo,et al.  Galaxy groups in the low-redshift Universe , 2017, 1706.02307.

[38]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy &amp; Astrophysics.

[39]  U. Seljak,et al.  Cosmological constraints from thermal Sunyaev-Zeldovich power spectrum revisited , 2016, 1609.01850.

[40]  L. Miller,et al.  Cross-correlating Planck tSZ with RCSLenS weak lensing: implications for cosmology and AGN feedback , 2016, 1608.07581.

[41]  Adam Lidz,et al.  A Measurement of the Galaxy Group-Thermal Sunyaev-Zel’dovich Effect Cross-Correlation Function , 2016, 1608.04160.

[42]  R. Teyssier,et al.  A new method to quantify the effects of baryons on the matter power spectrum , 2015, 1510.06034.

[43]  G. W. Pratt,et al.  Planck 2013 results. XXIX. The Planck catalogue of Sunyaev-Zeldovich sources: Addendum , 2015, 1502.00543.

[44]  J. Melin,et al.  Testing Sunyaev-Zel'dovich measurements of the hot gas content of dark matter haloes using synthetic skies , 2015, 1501.05666.

[45]  G. Hinshaw,et al.  Dissecting the thermal Sunyaev-Zeldovich-gravitational lensing cross-correlation with hydrodynamical simulations , 2014, 1412.6051.

[46]  S. Murray HMF: Halo Mass Function calculator , 2014 .

[47]  Adrian T. Lee,et al.  GALAXY CLUSTERS DISCOVERED VIA THE SUNYAEV–ZEL'DOVICH EFFECT IN THE 2500-SQUARE-DEGREE SPT-SZ SURVEY , 2014, 1409.0850.

[48]  E. Komatsu,et al.  Analytical model for non-thermal pressure in galaxy clusters - II. Comparison with cosmological hydrodynamics simulation , 2014, 1408.3832.

[49]  C. Heymans,et al.  Baryons, neutrinos, feedback and weak gravitational lensing , 2014, 1407.4301.

[50]  G. Hinshaw,et al.  Probing the diffuse baryon distribution with the lensing-tSZ cross-correlation , 2014, 1404.4808.

[51]  T. Kitayama Cosmological and Astrophysical Implications of the Sunyaev-Zel'dovich Effect , 2014, 1404.0870.

[52]  E. Komatsu,et al.  Analytical model for non-thermal pressure in galaxy clusters – III. Removing the hydrostatic mass bias , 2014, 1507.04338.

[53]  N. Aghanim,et al.  Measurement of $T_{\rm CMB}$ evolution from Sunyaev-Zel'dovich effect , 2013, 1311.4694.

[54]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[55]  C. A. Oxborrow,et al.  Planck 2013 results. XX. Cosmology from Sunyaev-Zeldovich cluster counts , 2013, 1303.5080.

[56]  G. W. Pratt,et al.  Planck2013 results. XXIX. ThePlanckcatalogue of Sunyaev-Zeldovich sources , 2013, Astronomy &amp; Astrophysics.

[57]  David N. Spergel,et al.  The Atacama Cosmology Telescope: Sunyaev-Zel'dovich selected galaxy clusters at 148 GHz from three seasons of data , 2013, 1301.0816.

[58]  R. Teyssier,et al.  Cusp–core transformations induced by AGN feedback in the progenitors of cluster galaxies , 2012, 1211.2648.

[59]  H. Hoekstra,et al.  Quantifying the effect of baryon physics on weak lensing tomography , 2011, 1105.1075.

[60]  G. W. Pratt,et al.  The universal galaxy cluster pressure profile from a representative sample of nearby systems (REXCESS) and the Y-SZ-M-500 relation , 2009, 0910.1234.

[61]  S. Kay,et al.  Dark matter halo concentrations in the Wilkinson Microwave Anisotropy Probe year 5 cosmology , 2008, 0804.2486.

[62]  Anna Pasquali,et al.  Galaxy Groups in the SDSS DR4. I. The Catalog and Basic Properties , 2007, 0707.4640.

[63]  Jun Zhang Measuring the cosmic shear in Fourier space , 2006, astro-ph/0612146.

[64]  L. Verde,et al.  The Thermal Sunyaev-Zel’dovich Signature of Baryons in the Local Universe , 2006, astro-ph/0606172.

[65]  M. Fukugita,et al.  The Cosmic Energy Inventory , 2004, astro-ph/0406095.

[66]  Y. Jing,et al.  A halo-based galaxy group finder: calibration and application to the 2dFGRS , 2004, astro-ph/0405234.

[67]  H. Trac,et al.  The intergalactic medium temperature and Compton y parameter , 2004, astro-ph/0402115.

[68]  J. Carlstrom,et al.  Cosmology with the Sunyaev-Zel'dovich Effect , 2002, astro-ph/0208192.

[69]  E. Komatsu,et al.  The Sunyaev-Zel'dovich angular power spectrum as a probe of cosmological parameters , 2002, astro-ph/0205468.

[70]  U. Pen,et al.  The Sunyaev-Zeldovich Effect: Simulations and Observations , 2002, astro-ph/0201375.

[71]  E. Komatsu,et al.  Universal gas density and temperature profile , 2001, astro-ph/0106151.

[72]  U. Pen,et al.  Deprojecting Sunyaev-Zeldovich Statistics , 2000, astro-ph/0007462.

[73]  H. Mo,et al.  Ellipsoidal collapse and an improved model for the number and spatial distribution of dark matter haloes , 1999, astro-ph/9907024.

[74]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[75]  N. Aghanim,et al.  A search for warm/hot gas filaments between pairs of SDSS Luminous Red Galaxies , 2017, Monthly Notices of the Royal Astronomical Society.