Optical trapping and manipulation of metallic micro/nanoparticles via photorefractive crystals.

A simple method to trap and manipulate metallic micro/nano-particles on the surface of photorefractive crystals is proposed. After inducing inhomogeneous charge density and space-charge fields in photorefractive crystals by non-uniform illumination, both uncharged and charged metallic particles can be trapped on the illuminated surface due to dielectrophoretic force and electrophoretic force, respectively. A transition from dielectrophoresis to electrophoresis is observed when manipulating nano-silver particles with high surface space-charge field. Our results show that this method is simple and effective to form surface microstructures of metallic particles.

[1]  Younan Xia,et al.  Langmuir-Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy , 2003 .

[2]  Ming C. Wu,et al.  Massively parallel manipulation of single cells and microparticles using optical images , 2005, Nature.

[3]  Photorefractive hologram writing with modulation 1. , 1991, Optics letters.

[4]  Dennis G. Hall,et al.  Absorption enhancement in silicon‐on‐insulator waveguides using metal island films , 1996 .

[5]  Lucian Dascalescu,et al.  Electrostatic separation of metals and plastics from granular industrial wastes , 2001 .

[6]  T. Gaylord,et al.  Lithium niobate: Summary of physical properties and crystal structure , 1985 .

[7]  B. Kasemo,et al.  Grating formation by metal-nanoparticle-mediated coupling of light into waveguided modes , 2008 .

[8]  H. A. Pohl,et al.  Some Effects of Nonuniform Fields on Dielectrics , 1958 .

[9]  Lambertus Hesselink,et al.  Nonlinear photorefractive response at high modulation depths , 1988 .

[10]  Dennis G. Hall,et al.  Enhanced Dipole-Dipole Interaction between Elementary Radiators Near a Surface , 1998 .

[11]  Demetri Psaltis,et al.  Trapping of dielectric particles with light-induced space-charge fields , 2007 .

[12]  A. Acrivos,et al.  Effects of interparticle electric interactions on dielectrophoresis in colloidal suspensions. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[14]  D. Grier A revolution in optical manipulation , 2003, Nature.

[15]  P. Gascoyne,et al.  Particle separation by dielectrophoresis , 2002, Electrophoresis.

[16]  R. Pethig,et al.  Applications of dielectrophoresis in biotechnology. , 1997, Trends in biotechnology.

[17]  P. Yeh,et al.  Introduction to photorefractive nonlinear optics , 1993 .

[18]  Alastair M. Glass,et al.  High‐voltage bulk photovoltaic effect and the photorefractive process in LiNbO3 , 1974 .

[19]  P. Johansen REVIEW ARTICLE: Photorefractive space charge field formation: linear and nonlinear effects , 2003 .

[20]  Karsten Buse,et al.  Light-induced charge transport processes in photorefractive crystals I: Models and experimental methods , 1997 .

[21]  H. A. Pohl The Motion and Precipitation of Suspensoids in Divergent Electric Fields , 1951 .

[22]  Holographic surface gratings in iron-doped lithium niobate , 2001 .

[24]  Guoqing Hu,et al.  Multiscale phenomena in microfluidics and nanofluidics , 2007 .

[25]  M. Hughes Dielectrophoretic behavior of latex nanospheres: low-frequency dispersion. , 2002, Journal of colloid and interface science.

[26]  Mercedes Carrascosa,et al.  Steady-state photorefractive gratings in LiNbO/sub 3/ for strong light modulation depths , 1994 .