Closing the Service Discovery Gap by Collaborative Tagging and Clustering Techniques

Whereas the number of services that are provided online is growing rapidly, current service discovery approaches seem to have problems fulfilling their objectives. Existing approaches are hampered by the complexity of underlying semantic service models and by the fact that they try to impose a technical vocabulary to users. This leads to what we call the service discovery gap. In this paper we envision an approach that allows users to query or browse services using free text tags, thus providing an interface in terms of the users' vocabulary instead of the service's vocabulary. Unlike simple keyword search, we envision tag clouds associated with services themselves as semantic descriptions carrying collaborative knowledge about the service that can be clustered hierarchically, forming lightweight "ontologies". Besides tag-based discovery only describing the service on a global view, we envision refined tags and refined search/discovery in terms of the concepts that are common to all current semantic service description models, i.e. input, output, and operation. We argue that Service matching can be achieved, by applying tag-cloud-based service similarity on the one hand and by clustering services using case based indexing and retrieval techniques on the other hand.

[1]  David McLean,et al.  An Approach for Measuring Semantic Similarity between Words Using Multiple Information Sources , 2003, IEEE Trans. Knowl. Data Eng..

[2]  Takahiro Kawamura,et al.  Semantic Matching of Web Services Capabilities , 2002, SEMWEB.

[3]  Roy Rada,et al.  Development and application of a metric on semantic nets , 1989, IEEE Trans. Syst. Man Cybern..

[4]  Paolo Avesani,et al.  Using Tags and Clustering to Identify Topic-Relevant Blogs , 2007, ICWSM.

[5]  Ian Horrocks,et al.  A software framework for matchmaking based on semantic web technology , 2003, WWW '03.

[6]  Kenneth D. Forbus,et al.  MAC/FAC: A Model of Similarity-Based Retrieval , 1995, Cogn. Sci..

[7]  Paolo Avesani,et al.  An Analysis of Bloggers, Topics and Tags for a Blog Recommender System , 2006, WebMine.

[8]  Susan T. Dumais,et al.  The vocabulary problem in human-system communication , 1987, CACM.

[9]  Mark Klein,et al.  Towards High-Precision Service Retrieval , 2002, SEMWEB.

[10]  Amit P. Sheth,et al.  SA-REST: Semantically Interoperable and Easier-to-Use Services and Mashups , 2007, IEEE Internet Computing.

[11]  San Murugesan,et al.  Understanding Web 2.0 , 2007, IT Professional.

[12]  Tomas Vitvar,et al.  SAWSDL: Semantic Annotations for WSDL and XML Schema , 2007, IEEE Internet Computing.

[13]  Jonathon S. Hare,et al.  Mind the gap: another look at the problem of the semantic gap in image retrieval , 2006, Electronic Imaging.

[14]  James A. Hendler,et al.  The Semantic Web" in Scientific American , 2001 .

[15]  Marco Luca Sbodio,et al.  SPARQL as an expression language for OWL-S , 2007 .

[16]  Abraham Bernstein,et al.  Adding Data Mining Support to SPARQL Via Statistical Relational Learning Methods , 2008, ESWC.

[17]  Tim O'Reilly,et al.  What is Web 2.0: Design Patterns and Business Models for the Next Generation of Software , 2007 .

[18]  Jerry R. Hobbs,et al.  DAML-S: Semantic Markup for Web Services , 2001, SWWS.

[19]  David M. Pennock,et al.  Categories and Subject Descriptors , 2001 .

[20]  Dieter Fensel,et al.  WSMO-Lite: lightweight semantic descriptions for services on the web , 2007, ECOWS 2007.

[21]  Ralph Bergmann,et al.  An Efficient Approach to Similarity-Based Retrieval on Top of Relational Databases , 2000, EWCBR.

[22]  Paolo Avesani,et al.  Language Games: Solving the Vocabulary Problem in Multi-Case-Base Reasoning , 2005, ICCBR.

[23]  Matthias Klusch,et al.  Larks: Dynamic Matchmaking Among Heterogeneous Software Agents in Cyberspace , 2002, Autonomous Agents and Multi-Agent Systems.

[24]  J. Farrell,et al.  Semantic Annotations for WSDL and XML Schema , 2007 .

[25]  Anupriya Ankolekar,et al.  Automated discovery, interaction and composition of Semantic Web services , 2003, J. Web Semant..

[26]  Dieter Fensel,et al.  WSMO-Lite: lightweight semantic descriptions for services on the web , 2007, Fifth European Conference on Web Services (ECOWS'07).

[27]  Gerard Salton,et al.  Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by Computer , 1989 .

[28]  Mark Klein,et al.  Semantic Process Retrieval with iSPARQL , 2007, ESWC.

[29]  Steffen Staab,et al.  Efficient Discovery of Services Specified in Description Logics Languages , 2007, SMRR.

[30]  Abraham Bernstein,et al.  The Creation and Evaluation of iSPARQL Strategies for Matchmaking , 2008, ESWC.

[31]  Francis G. McCabe,et al.  Reference Model for Service Oriented Architecture 1.0 , 2006 .

[32]  Matthias Klusch,et al.  Automated semantic web service discovery with OWLS-MX , 2006, AAMAS '06.

[33]  Tim O'Reilly,et al.  What is Web 2.0: Design Patterns and Business Models for the Next Generation of Software , 2007 .

[34]  Philip Resnik,et al.  Using Information Content to Evaluate Semantic Similarity in a Taxonomy , 1995, IJCAI.

[35]  Stijn Heymans,et al.  Two-Phase Web Service Discovery Based on Rich Functional Descriptions , 2007, ESWC.

[36]  Hsinchun Chen,et al.  A Concept Space Approach to Addressing the Vocabulary Problem in Scientific Information Retrieval: An Experiment on the Worm Community System , 1997, J. Am. Soc. Inf. Sci..

[37]  Boris Motik,et al.  Variance in e-Business Service Discovery , 2004, SWS@ISWC.

[38]  Amit P. Sheth,et al.  Web Service Semantics - WSDL-S , 2005 .

[39]  George Karypis,et al.  Centroid-Based Document Classification: Analysis and Experimental Results , 2000, PKDD.

[40]  Martin R. Gibbs,et al.  Mediating intimacy: designing technologies to support strong-tie relationships , 2005, CHI.

[41]  George Karypis,et al.  Hierarchical Clustering Algorithms for Document Datasets , 2005, Data Mining and Knowledge Discovery.

[42]  Robin D. Burke,et al.  Hybrid Recommender Systems: Survey and Experiments , 2002, User Modeling and User-Adapted Interaction.

[43]  Dieter Fensel,et al.  Automatic Location of Services , 2005, ESWC.

[44]  Xuan Shi Semantic Web Services: An Unfulfilled Promise , 2007, IT Professional.

[45]  Pádraig Cunningham,et al.  An on-line evaluation framework for recommender systems , 2002 .

[46]  Mark Klein,et al.  Massachusetts Institute of Technology Abraham Bernstein University of Zurich Toward High-Precision Service Retrieval , 2022 .

[47]  Kate Ehrlich,et al.  Pointing the way: active collaborative filtering , 1995, CHI '95.

[48]  Sascha Ossowski,et al.  Towards Fine-grained Service Matchmaking by Using Concept Similarity , 2007, SMRR.