Procedures for Fixed-Width Interval Estimation of the Largest Normal Mean

Abstract Suppose that we are given k(≥1) independent and normally distributed populations π1, …, πk , where πi has unknown mean μ i and unknown variance σi 2 (i = 1, …, k). Let μ[k] denote the largest of the means μ1, …, μk . A two-stage procedure is developed which provides a confidence interval for μ[k] with fixed width. Tables needed to apply the procedure are provided.

[1]  C. Stein A Two-Sample Test for a Linear Hypothesis Whose Power is Independent of the Variance , 1945 .

[2]  Confidence intervals for ranked means , 1970 .

[3]  K. Alam,et al.  On Interval Estimation of a Ranked Parameter , 1974 .

[4]  S. Dalal,et al.  On Approximations to the t-Distribution , 1972 .

[5]  Edward J. Dudewicz,et al.  OPTIMAL CONFIDENCE INTERVALS FOR THE LARGEST LOCATION PARAMETER , 1971 .

[6]  S. Dalal,et al.  ALLOCATION OF OBSERVATIONS IN RANKING AND SELECTION WITH UNEQUAL VARIANCES , 1971 .

[7]  Y. Tong Multi‐Stage Interval Estimations of the Largest Mean of K Normal Populations , 1970 .

[8]  E. Dudewicz,et al.  New Tables for Multiple Comparisons With a Control (Unknown Variances) , 1975 .

[9]  C. Dunnett,et al.  A TOW-SAMPLE MULTIPLE DECISION PROCEDURE FOR RANKING MEANS OF NORMAL POPULATIONS WITH A COMMON UNKNOWN VARIANCE , 1954 .

[10]  Hubert J. Chen Estimation of ordered parameters from k stochastically increasing distributions , 1977 .

[11]  K. L. Saxena,et al.  Interval Estimation of the Largest Mean of k Normal Populations with Known Variances , 1969 .

[12]  Y. Tong,et al.  An Asymptotically Optimal Sequential Procedure for the Estimation of the Largest Mean , 1973 .

[13]  H. J. Chen,et al.  A table for interval estimation of the largest mean of k normal populations , 1975 .

[14]  K. L. Saxena,et al.  Optimal Confidence Interval for a Ranked Parameter , 1973 .

[15]  Edward J. Dudewicz Two-Sided Confidence Intervals for Ranked Means , 1972 .