Self-adapting weighted operators for multiscale gradient fusion

Abstract Gradient maps are common intermediate representations in image processing, with extensive use in both classical and state-of-the-art algorithms. Most of the research on gradient map extraction has been devoted to the definition of gradient extraction operators or filters, normally by optimizing certain criteria. In this context, we find a rather limited literature in gradient map extraction using multiscale information. In this work, we develop the idea of producing a gradient map by fusing the gradient maps obtained at different scales. We first analyze the Gaussian Scale Space and the behaviour of gradients when images are projected into it; second, we propose two classes of self-adapting vector fusion operators, which are inspired by the focus-selective nature of the human visual system; third, we present a framework for multiscale boundary detection based on the use of such classes of operators for multiscale gradient fusion. We experimentally test our boundary detection framework to illustrate the validity of our vector fusion operators.

[1]  Joseph J. Atick,et al.  What Does the Retina Know about Natural Scenes? , 1992, Neural Computation.

[2]  Scott T. Acton,et al.  Morphological pyramids for multiscale edge detection , 1998, 1998 IEEE Southwest Symposium on Image Analysis and Interpretation (Cat. No.98EX165).

[3]  Li Chen,et al.  Multi-focus image fusion using a bilateral gradient-based sharpness criterion , 2011 .

[4]  Gonzalo Pajares,et al.  A wavelet-based image fusion tutorial , 2004, Pattern Recognit..

[5]  Peng Wang,et al.  Gravitation-Based Edge Detection in Hyperspectral Images , 2017, Remote. Sens..

[6]  Jitendra Malik,et al.  A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[7]  Charless C. Fowlkes,et al.  Contour Detection and Hierarchical Image Segmentation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Javier Montero,et al.  A discussion on aggregation operators , 2004, Kybernetika.

[9]  J. Merigó,et al.  The Induced Generalized OWA Operator , 2009, EUSFLAT Conf..

[10]  Tony Lindeberg Edge Detection and Ridge Detection with Automatic Scale Selection , 2004, International Journal of Computer Vision.

[11]  Vladimir S. Petrovic,et al.  Gradient-based multiresolution image fusion , 2004, IEEE Transactions on Image Processing.

[12]  Humberto Bustince,et al.  Multiscale edge detection based on Gaussian smoothing and edge tracking , 2013, Knowl. Based Syst..

[13]  Peng-Lang Shui,et al.  Noise-robust edge detector combining isotropic and anisotropic Gaussian kernels , 2012, Pattern Recognit..

[14]  Sun Li,et al.  Multi-scale weighted gradient-based fusion for multi-focus images , 2014, Inf. Fusion.

[15]  Qiang Liu,et al.  A novel approach for edge detection based on the theory of universal gravity , 2007, Pattern Recognit..

[16]  Qi Tian,et al.  A survey of recent advances in visual feature detection , 2015, Neurocomputing.

[17]  Sean Dougherty,et al.  Edge Detector Evaluation Using Empirical ROC Curves , 2001, Comput. Vis. Image Underst..

[18]  Humberto Bustince,et al.  On the impact of anisotropic diffusion on edge detection , 2014, Pattern Recognit..

[19]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[20]  Dimitar Filev,et al.  Induced ordered weighted averaging operators , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[21]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  A. Rosenfeld A nonlinear edge detection technique , 1970 .

[23]  Fredrik Bergholm,et al.  Edge Focusing , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Lei Zhang,et al.  Canny edge detection enhancement by scale multiplication , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  George Economou,et al.  Color edge detection using the minimal spanning tree , 2005, Pattern Recognit..

[26]  Jussi Parkkinen,et al.  Edge detection in multispectral images using the self-organizing map , 2003, Pattern Recognit. Lett..

[27]  C. B. Bell,et al.  Bivariate Symmetry Tests: Parametric and Nonparametric , 1969 .

[28]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[29]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decisionmaking , 1988, IEEE Trans. Syst. Man Cybern..

[30]  J. Astola,et al.  Vector median filters , 1990, Proc. IEEE.

[31]  Alan L. Yuille,et al.  A statistical approach to multi-scale edge detection , 2003, Image Vis. Comput..

[32]  Panos E. Trahanias,et al.  Vector order statistics operators as color edge detectors , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[33]  Allan D. Jepson,et al.  Benchmarking Image Segmentation Algorithms , 2009, International Journal of Computer Vision.

[34]  Humberto Bustince,et al.  Quantitative error measures for edge detection , 2013, Pattern Recognit..

[35]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[36]  Danny Barash,et al.  A Fundamental Relationship between Bilateral Filtering, Adaptive Smoothing, and the Nonlinear Diffusion Equation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Tomaso A. Poggio,et al.  On Edge Detection , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Daniel P. Huttenlocher,et al.  Efficient Graph-Based Image Segmentation , 2004, International Journal of Computer Vision.

[39]  Dorin Comaniciu,et al.  A common framework for nonlinear diffusion, adaptive smoothing, bilateral filtering and mean shift , 2004, Image Vis. Comput..

[40]  C. Guada,et al.  Classifying image analysis techniques from their output , 2016, Int. J. Comput. Intell. Syst..

[41]  V. Barnett The Ordering of Multivariate Data , 1976 .

[42]  Alessandro Neri,et al.  A Biologically Motivated Multiresolution Approach to Contour Detection , 2007, EURASIP J. Adv. Signal Process..

[43]  Lawrence B. Wolff,et al.  A new visualization paradigm for multispectral imagery and data fusion , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[44]  Gleb Beliakov,et al.  Aggregation Functions: A Guide for Practitioners , 2007, Studies in Fuzziness and Soft Computing.

[45]  Zheng Liu,et al.  Objective Assessment of Multiresolution Image Fusion Algorithms for Context Enhancement in Night Vision: A Comparative Study , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  Andrew P. Witkin,et al.  Analyzing Oriented Patterns , 1985, IJCAI.

[47]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[48]  Alan L. Yuille,et al.  Scaling Theorems for Zero Crossings , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[49]  Bhabatosh Chanda,et al.  A simple and efficient algorithm for multifocus image fusion using morphological wavelets , 2006, Signal Process..

[50]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[51]  Silvano Di Zenzo,et al.  A note on the gradient of a multi-image , 1986, Comput. Vis. Graph. Image Process..

[52]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[53]  Lawrence B. Wolff,et al.  Multispectral image visualization through first-order fusion , 2002, IEEE Trans. Image Process..

[54]  Max A. Viergever,et al.  Efficient and reliable schemes for nonlinear diffusion filtering , 1998, IEEE Trans. Image Process..

[55]  Aldo Cumani,et al.  Edge detection in multispectral images , 1991, CVGIP Graph. Model. Image Process..

[56]  Jacques Blanc-Talon,et al.  Metric tensor for multicomponent edge detection , 2010, 2010 IEEE International Conference on Image Processing.

[57]  Luc Florack,et al.  The Topological Structure of Scale-Space Images , 2000, Journal of Mathematical Imaging and Vision.

[58]  Fionn Murtagh,et al.  Image Processing and Data Analysis - The Multiscale Approach , 1998 .

[59]  Jiayi Ma,et al.  Infrared and visible image fusion via gradient transfer and total variation minimization , 2016, Inf. Fusion.

[60]  Andrew P. Witkin,et al.  Uniqueness of the Gaussian Kernel for Scale-Space Filtering , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.