Predicting functional impairment trajectories in amyotrophic lateral sclerosis: a probabilistic, multifactorial model of disease progression

R. Rinaldi | B. Di Camillo | M. Vinceti | A. Borghi | R. Michelucci | A. Chiò | G. Mora | V. Drory | A. Calvo | G. Pavesi | P. Ghiglione | P. Cortelli | S. Meletti | E. Sette | M. Pugliatti | N. Di Vito | C. Moglia | F. Valzania | E. Zucchi | I. Martinelli | J. Mandrioli | M. Gotkine | M. C. Torrieri | U. Manera | A. Canosa | R. Vasta | G. Fuda | M. Grassano | P. Cugnasco | N. Launaro | L. Mazzini | I. Bartolomei | N. Fini | S. D'alfonso | D. Leotta | G. Gusmaroli | C. Comi | A. Bertolotto | L. Corrado | L. Testa | C. Lunetta | M. Brunetti | F. Casale | F. Marchi | M. Bracaglia | M. De Mattei | M. Barberis | B. Iazzolino | L. Peotta | F. Palumbo | V. Vacchiano | C. Tarlarini | S. Vidale | Alessandro Zandonà | M. Casmiro | C. Labate | L. Sbaiz | B. Nefussy | S. Gallone | A. Sapio | Fabrizio Salvi | F. Poglio | C. Simonini | G. Gianferrari | M. Santangelo | A. Patuelli | E. Canali | D. Ferrandi | E. Terlizzi | M. Aguggia | P. Meineri | S. Malagù | L. Zinno | M. Longoni | S. Morresi | A. Bombaci | E. Tavazzi | Sebastian Daberdaku | A. Rita Levi A. C. A. U. R. F. A. M. M. F. G. P. B. L Chiò Montalcini Calvo Moglia Canosa Manera Vas | R. L. Montalcini | S. Gentile | A. Mauro | M. Gionco | E. Oddenino | R. Cavallo | L. Ruiz | E. Rota | M. Dotta | M. Giovanni | R. Liguori | A. Zini | V. Tugnoli | L. Codeluppi | D. Medici | G. Pilurzi | D. Guidetti | S. Pasqua | P. Querzani | M. Currò Dossi | G. D. De Marco | Enrico Grisan | P. Salomone | P. DeMassis | M. Curro’ Dossi | E. Grisan | A. Chiò | P. Querzani

[1]  D. Fan,et al.  Prognostic models for amyotrophic lateral sclerosis: a systematic review , 2021, Journal of Neurology.

[2]  P. Bede,et al.  Manifold learning for amyotrophic lateral sclerosis functional loss assessment , 2020, Journal of Neurology.

[3]  Enrico Longato,et al.  A practical perspective on the concordance index for the evaluation and selection of prognostic time-to-event models , 2020, J. Biomed. Informatics.

[4]  A. Chiò,et al.  A Dynamic Bayesian Network model for the simulation of Amyotrophic Lateral Sclerosis progression , 2019, BMC Bioinformatics.

[5]  Ivo D Dinov,et al.  Model-Based and Model-Free Techniques for Amyotrophic Lateral Sclerosis Diagnostic Prediction and Patient Clustering , 2018, Neuroinformatics.

[6]  Karel G M Moons,et al.  Prognosis for patients with amyotrophic lateral sclerosis: development and validation of a personalised prediction model , 2018, The Lancet Neurology.

[7]  Jung-Hsien Chiang,et al.  Stratification of amyotrophic lateral sclerosis patients: a crowdsourcing approach , 2018, Scientific Reports.

[8]  E. Granieri,et al.  Riluzole and other prognostic factors in ALS: a population-based registry study in Italy , 2018, Journal of Neurology.

[9]  Adriano Chiò,et al.  Secular Trends of Amyotrophic Lateral Sclerosis: The Piemonte and Valle d’Aosta Register , 2017, JAMA neurology.

[10]  G. Nagel,et al.  Hypothalamic atrophy is related to body mass index and age at onset in amyotrophic lateral sclerosis , 2017, Journal of Neurology, Neurosurgery, and Psychiatry.

[11]  A. Chiò,et al.  Age-related penetrance of the C9orf72 repeat expansion , 2017, Scientific Reports.

[12]  Mei-Lyn Ong,et al.  Predicting functional decline and survival in amyotrophic lateral sclerosis , 2017, PloS one.

[13]  A. Al-Chalabi,et al.  Comparison of the King’s and MiToS staging systems for ALS , 2017, Amyotrophic lateral sclerosis & frontotemporal degeneration.

[14]  Alberto Franzin,et al.  bnstruct: an R package for Bayesian Network structure learning in the presence of missing data , 2016, Bioinform..

[15]  A. Al-Chalabi,et al.  Amyotrophic lateral sclerosis: moving towards a new classification system , 2016, The Lancet Neurology.

[16]  Neta Zach,et al.  Predicting disease progression in amyotrophic lateral sclerosis , 2016, Annals of clinical and translational neurology.

[17]  Jj Allaire,et al.  Web Application Framework for R , 2016 .

[18]  Pedro Tomás,et al.  Prognostic models based on patient snapshots and time windows: Predicting disease progression to assisted ventilation in Amyotrophic Lateral Sclerosis , 2015, J. Biomed. Informatics.

[19]  Claudio Cobelli,et al.  A Dynamic Bayesian Network model for long-term simulation of clinical complications in type 1 diabetes , 2015, J. Biomed. Informatics.

[20]  E. Granieri,et al.  Heterogeneity in ALSFRS-R decline and survival: a population-based study in Italy , 2015, Neurological Sciences.

[21]  F. Franchignoni,et al.  A further Rasch study confirms that ALSFRS-R does not conform to fundamental measurement requirements , 2015, Amyotrophic lateral sclerosis & frontotemporal degeneration.

[22]  A. Chiò,et al.  The MITOS system predicts long-term survival in amyotrophic lateral sclerosis , 2015, Journal of Neurology, Neurosurgery & Psychiatry.

[23]  Dimitrios I. Fotiadis,et al.  A Multiscale Approach for Modeling Atherosclerosis Progression , 2015, IEEE Journal of Biomedical and Health Informatics.

[24]  M. Cudkowicz,et al.  The PRO-ACT database , 2014, Neurology.

[25]  Johann S. Hawe,et al.  Crowdsourced analysis of clinical trial data to predict amyotrophic lateral sclerosis progression , 2014, Nature Biotechnology.

[26]  Hans H. Jung,et al.  RandomForest4Life: A Random Forest for predicting ALS disease progression , 2014, Amyotrophic lateral sclerosis & frontotemporal degeneration.

[27]  E. Granieri,et al.  Epidemiology of amyotrophic lateral sclerosis in Emilia Romagna Region (Italy): A population based study , 2014, Amyotrophic lateral sclerosis & frontotemporal degeneration.

[28]  Maurizio Fava,et al.  Amyotrophic lateral sclerosis disease progression model , 2014, Amyotrophic lateral sclerosis & frontotemporal degeneration.

[29]  V. Meininger,et al.  A phase II−III trial of olesoxime in subjects with amyotrophic lateral sclerosis , 2014, European journal of neurology.

[30]  A. Al-Chalabi,et al.  Use of clinical staging in amyotrophic lateral sclerosis for phase 3 clinical trials , 2014, Journal of Neurology, Neurosurgery & Psychiatry.

[31]  Adriano Chiò,et al.  State of play in amyotrophic lateral sclerosis genetics , 2013, Nature Neuroscience.

[32]  A. Chiò,et al.  Development and evaluation of a clinical staging system for amyotrophic lateral sclerosis , 2013, Journal of Neurology, Neurosurgery & Psychiatry.

[33]  O. Hardiman,et al.  Dexpramipexole versus placebo for patients with amyotrophic lateral sclerosis (EMPOWER): a randomised, double-blind, phase 3 trial , 2013, The Lancet Neurology.

[34]  E. Beghi,et al.  Randomized double-blind placebo-controlled trial of acetyl-L-carnitine for ALS , 2013, Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration.

[35]  A. Chiò,et al.  Evidence of multidimensionality in the ALSFRS-R Scale: a critical appraisal on its measurement properties using Rasch analysis , 2013, Journal of Neurology, Neurosurgery & Psychiatry.

[36]  A. Al-Chalabi,et al.  Young-onset amyotrophic lateral sclerosis: historical and other observations. , 2012, Brain : a journal of neurology.

[37]  A. Al-Chalabi,et al.  The genetics and neuropathology of amyotrophic lateral sclerosis , 2012, Acta Neuropathologica.

[38]  R. Spataro,et al.  Factors affecting the diagnostic delay in amyotrophic lateral sclerosis , 2012, Clinical Neurology and Neurosurgery.

[39]  Janel O. Johnson,et al.  Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study , 2012, The Lancet Neurology.

[40]  A. Al-Chalabi,et al.  A proposed staging system for amyotrophic lateral sclerosis , 2012, Brain : a journal of neurology.

[41]  A. Chiò,et al.  ALS clinical trials , 2011, Neurology.

[42]  A. Chiò,et al.  Phenotypic heterogeneity of amyotrophic lateral sclerosis: a population based study , 2011, Journal of Neurology, Neurosurgery & Psychiatry.

[43]  Pamela A McCombe,et al.  Effects of gender in amyotrophic lateral sclerosis. , 2010, Gender medicine.

[44]  I. Mackenzie,et al.  TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia , 2010, The Lancet Neurology.

[45]  M. Turner,et al.  The diagnostic pathway and prognosis in bulbar-onset amyotrophic lateral sclerosis , 2010, Journal of the Neurological Sciences.

[46]  P. Berlit,et al.  Diagnostic problems and delay of diagnosis in amyotrophic lateral sclerosis , 2010, Clinical Neurology and Neurosurgery.

[47]  Nir Friedman,et al.  Probabilistic Graphical Models - Principles and Techniques , 2009 .

[48]  M. Massagli,et al.  Measuring function in advanced ALS: validation of ALSFRS‐EX extension items , 2009, European journal of neurology.

[49]  A. Voustianiouk,et al.  ALSFRS and appel ALS scores: Discordance with disease progression , 2008, Muscle & nerve.

[50]  Xun Hu,et al.  TDP-43 Mutations in Familial and Sporadic Amyotrophic Lateral Sclerosis , 2008, Science.

[51]  Constantin F. Aliferis,et al.  The max-min hill-climbing Bayesian network structure learning algorithm , 2006, Machine Learning.

[52]  S H Appel,et al.  Forced vital capacity (FVC) as an indicator of survival and disease progression in an ALS clinic population , 2005, Journal of Neurology, Neurosurgery & Psychiatry.

[53]  K. Talbot Motor neuron disease , 2004, Practical Neurology.

[54]  A. Al-Chalabi,et al.  Early symptom progression rate is related to ALS outcome: a prospective population-based study. , 2002, Neurology.

[55]  M. Swash,et al.  El Escorial revisited: Revised criteria for the diagnosis of amyotrophic lateral sclerosis , 2000, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.

[56]  J. Cedarbaum,et al.  The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function , 1999, Journal of the Neurological Sciences.

[57]  R. Tibshirani The lasso method for variable selection in the Cox model. , 1997, Statistics in medicine.

[58]  P. Leigh,et al.  Motor neuron disease. , 1994, Springer London.

[59]  D. Silberberg,et al.  New diagnostic criteria for multiple sclerosis: Guidelines for research protocols , 1983, Annals of neurology.

[60]  N. Pearce,et al.  The multistep hypothesis of ALS revisited , 2018, Neurology.

[61]  A. Al-Chalabi,et al.  Amyotrophic lateral sclerosis , 2017, Nature Reviews Disease Primers.

[62]  A. Chiò,et al.  Factors predicting survival in ALS: a multicenter Italian study , 2016, Journal of Neurology.

[63]  A. Ludolph,et al.  Amyotrophic lateral sclerosis. , 2012, Current opinion in neurology.

[64]  A. Brunetti,et al.  A randomized controlled clinical trial of growth hormone in amyotrophic lateral sclerosis: clinical, neuroimaging, and hormonal results , 2011, Journal of Neurology.

[65]  Jürgen Hesser,et al.  Virtual Intensive Care Unit (ICU): Real-Time Simulation Environment Applying Hybrid Approach Using Dynamic Bayesian Networks and ODEs , 2009, MMVR.

[66]  D. Rosen Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis , 1993, Nature.