New fuzzy control model and dynamic output feedback parallel distributed compensation

A new fuzzy modeling based on fuzzy linear fractional transformations model is introduced. This new representation is shown to be a flexible tool for handling complicated nonlinear models. Particularly, the new fuzzy model provides an efficient and tractable way to handle the output feedback parallel distributed compensation problem. We demonstrate that this problem can be given a linear matrix inequality characterization and hence is immediately solvable through available semidefinite programming codes. The capabilities of the new fuzzy modeling is illustrated through numerical examples.

[1]  Kazuo Tanaka,et al.  Parallel distributed compensation for Takagi-Sugeno fuzzy models: multiobjective controller design , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[2]  Dennis S. Bernstein,et al.  A benchmark problem for nonlinear control design: problem statement, experimental testbed, and passive nonlinear compensation , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[3]  Hoang Duong Tuan,et al.  Mixed H/sub 2//H/sub /spl infin// multi-channel linear parameter-varying control in discrete time , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[4]  C. Scherer,et al.  Multiobjective output-feedback control via LMI optimization , 1997, IEEE Trans. Autom. Control..

[5]  Truong Q. Nguyen,et al.  Robust filtering for uncertain nonlinearly parameterized plants , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[6]  Dennis S. Bernstein,et al.  A BENCHMARK PROBLEM FOR NONLINEAR CONTROL DESIGN , 1998 .

[7]  Pierre Apkarian,et al.  Parameterized LMIs in Control Theory , 2000, SIAM J. Control. Optim..

[8]  Kazuo Tanaka,et al.  Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs , 1998, IEEE Trans. Fuzzy Syst..

[9]  D. Bernstein,et al.  Global stabilization of the oscillating eccentric rotor , 1994 .

[10]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[11]  Pierre Apkarian,et al.  MISSILE AUTOPILOT DESIGN VIA A MULTI-CHANNEL LFT/LPV CONTROL METHOD , 2002 .

[12]  T. Taniguchi,et al.  Fuzzy control based on quadratic performance function-a linear matrix inequality approach , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[13]  Alan J. Laub,et al.  The LMI control toolbox , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[14]  P. Apkarian,et al.  Advanced gain-scheduling techniques for uncertain systems , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[15]  Pierre Apkarian,et al.  Missile autopilot design via a multi‐channel LFT/LPV control method , 2002 .

[16]  P. Gahinet,et al.  A linear matrix inequality approach to H∞ control , 1994 .

[17]  P. Apkarian,et al.  Relaxations of parameterized LMIs with control applications , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[18]  Pierre Apkarian,et al.  Parameterized linear matrix inequality techniques in fuzzy control system design , 2001, IEEE Trans. Fuzzy Syst..

[19]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[20]  L. Ghaoui,et al.  Measurement‐scheduled control for the RTAC problem: an LMI approach , 1998 .

[21]  P. Apkarian,et al.  Mixed H2/H∞ multi-channel linear parameter-varying control in discrete time , 2000 .

[22]  P. Gahinet,et al.  A convex characterization of gain-scheduled H∞ controllers , 1995, IEEE Trans. Autom. Control..

[23]  P. Gahinet,et al.  A convex characterization of gain-scheduled H∞ controllers , 1995, IEEE Trans. Autom. Control..

[24]  Truong Q. Nguyen,et al.  Robust filtering for uncertain nonlinearly parameterized plants , 2003, IEEE Trans. Signal Process..

[25]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[26]  Mario A. Rotea,et al.  An /spl Lscr//sub 2/ disturbance attenuation approach to the nonlinear benchmark problem , 1995, Proceedings of 1995 American Control Conference - ACC'95.