A nonlocal connection between certain linear and nonlinear ordinary differential equations - Part II: Complex nonlinear oscillators

In this paper, we present a method to identify integrable complex nonlinear oscillator systems and construct their solutions. For this purpose, we introduce two types of nonlocal transformations which relate specific classes of nonlinear complex ordinary differential equations (ODEs) with complex linear ODEs, thereby proving the integrability of the former. We also show how to construct the solutions using the two types of nonlocal transformations with several physically interesting cases as examples.

[1]  N. MacDonald Nonlinear dynamics , 1980, Nature.

[2]  Disappearance of chaos and integrability in an externally modulated nonlinear oscillator , 1984 .

[3]  P. Leach,et al.  The Painleve test, hidden symmetries and the equation y , 1993 .

[4]  V. K. Chandrasekar,et al.  A simple and unified approach to identify integrable nonlinear oscillators and systems , 2005, nlin/0511030.

[5]  M Senthilvelan,et al.  On the complete integrability and linearization of nonlinear ordinary differential equations. II. Third-order equations , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[6]  V. K. Chandrasekar,et al.  A unification in the theory of linearization of second-order nonlinear ordinary differential equations , 2005, nlin/0510045.

[7]  C. Cosgrove Chazy Classes IX–XI Of Third‐Order Differential Equations , 2000 .

[8]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[9]  V. K. Chandrasekar,et al.  On the complete integrability and linearization of certain second-order nonlinear ordinary differential equations , 2004, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[10]  F. Mahomed,et al.  THE LIE ALGEBRA sl(3, R) AND LINEARIZATION , 1989 .

[11]  F. Mahomed,et al.  THE LINEAR SYMTRIES OF A NONLINEAR DIFFERENTIAL EQUATION , 1985 .

[12]  Fahd Jrad,et al.  Painlevé Test and Higher Order Differential Equations , 2002, nlin/0301043.

[13]  Dixon,et al.  Solutions of a generalized Emden equation and their physical significance. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[14]  K. Sawada,et al.  On Exactly Soluble Nonlinear Ordinary Differential Equations of the Liénard Type , 1978 .

[15]  M. Lakshmanan,et al.  Exact quantization of a PT-symmetric (reversible) Liénard-type nonlinear oscillator , 2012, 1209.1182.

[16]  M. Feix,et al.  Analysis and solution of a nonlinear second‐order differential equation through rescaling and through a dynamical point of view , 1988 .

[17]  Monika Sharma,et al.  Chemical oscillations , 2006 .

[18]  M. Feix,et al.  On the singularity analysis of ordinary differential equations invariant under time translation and rescaling , 1997 .

[19]  V. K. Chandrasekar,et al.  On the complete integrability and linearization of nonlinear ordinary differential equations. III. Coupled first-order equations , 2008, Proceedings of the Royal Society A.

[20]  Diego L. González,et al.  Chaos in a Nonlinear Driven Oscillator with Exact Solution , 1983 .

[21]  J. Lewis Classical and Quantum Systems with Time-Dependent Harmonic-Oscillator-Type Hamiltonians , 1967 .

[22]  Jaume Llibre,et al.  Algebraic aspects of integrability for polynomial systems , 1999 .

[23]  P. Leach First integrals for the modified Emden equation q̈+α(t) q̇+qn =0 , 1985 .

[24]  V. K. Chandrasekar,et al.  A class of solvable coupled nonlinear oscillators with amplitude independent frequencies , 2012, 1204.6166.

[25]  Edmund Pinney,et al.  The nonlinear differential equation ”+()+⁻³=0 , 1950 .

[26]  Integrable relativistic models and the generalized Chazy equation , 1999 .

[27]  Carl M. Bender,et al.  Making sense of non-Hermitian Hamiltonians , 2007, hep-th/0703096.

[28]  J. Meinhardt,et al.  Symmetries and differential equations , 1981 .

[29]  J. Chazy,et al.  Sur les équations différentielles du troisième ordre et d'ordre supérieur dont l'intégrale générale a ses points critiques fixes , 1911 .

[30]  Norbert Euler,et al.  The Riccati and Ermakov-Pinney hierarchies , 2007 .

[31]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[32]  M. Euler,et al.  Sundman Symmetries of Nonlinear Second-Order and Third-Order Ordinary Differential Equations , 2004 .

[33]  V. K. Chandrasekar,et al.  Unusual Liénard-type nonlinear oscillator. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  H. R. Lewis,et al.  Class of Exact Invariants for Classical and Quantum Time‐Dependent Harmonic Oscillators , 1968 .

[35]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[36]  V. K. Chandrasekar,et al.  A nonlocal connection between certain linear and nonlinear ordinary differential equations/oscillators , 2006, nlin/0607042.