Object tracking in an outdoor environment using fusion of features and cameras

Abstract This paper presents methods for tracking moving objects in an outdoor environment. A robust tracking is achieved using feature fusion and multiple cameras. The proposed method integrates spatial position, shape and color information to track object blobs. The trajectories obtained from individual cameras are incorporated by an extended Kalman filter (EKF) to resolve object occlusion. Our results show that integrating simple features makes the tracking effective and that EKF improves the tracking accuracy when long-term or temporary occlusion occurs. The tracked objects are successfully classified into three categories: single person, people group, or vehicle.

[1]  C. Malsburg,et al.  Self-organized integration of adaptive visual cues for face tracking , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).

[2]  Jake K. Aggarwal,et al.  Quaternion-Based Tracking of Multiple Objects in Synchronized Videos , 2003, ISCIS.

[3]  Toshimitsu Kaneko,et al.  Feature selection for reliable tracking using template matching , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[4]  Jake K. Aggarwal,et al.  Temporal spatio-velocity transform and its application to tracking and interaction , 2004, Comput. Vis. Image Underst..

[5]  Gian Luca Foresti A real-time system for video surveillance of unattended outdoor environments , 1998, IEEE Trans. Circuits Syst. Video Technol..

[6]  Alex Pentland,et al.  Pfinder: real-time tracking of the human body , 1996, Proceedings of the Second International Conference on Automatic Face and Gesture Recognition.

[7]  Gregory D. Hager,et al.  Probabilistic Data Association Methods for Tracking Complex Visual Objects , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Emanuele Trucco,et al.  Making good features track better , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[9]  A. M. Tekalp,et al.  Multiple camera tracking of interacting and occluded human motion , 2001, Proc. IEEE.

[10]  Jake K. Aggarwal,et al.  Retrieval by classification of images containing large manmade objects using perceptual grouping , 2002, Pattern Recognit..

[11]  Shaogang Gong,et al.  Tracking and segmenting people in varying lighting conditions using colour , 1998, Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition.

[12]  Mubarak Shah,et al.  Consistent Labeling of Tracked Objects in Multiple Cameras with Overlapping Fields of View , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Anil K. Jain,et al.  Unsupervised Learning of Finite Mixture Models , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Sang Uk Lee,et al.  Integrated Position Estimation Using Aerial Image Sequences , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  C. H. Chen,et al.  Handbook of Pattern Recognition and Computer Vision , 1993 .

[16]  Jake K. Aggarwal,et al.  A hierarchical Bayesian network for event recognition of human actions and interactions , 2004, Multimedia Systems.

[17]  Quming Zhou,et al.  TRACKING AND CLASSIFYING MOVING OBJECTS USING SINGLE OR MULTIPLE CAMERAS , 2005 .

[18]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[19]  Roger Y. Tsai,et al.  A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses , 1987, IEEE J. Robotics Autom..

[20]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[21]  Ian D. Reid,et al.  The Active Recovery of 3D Motion Trajectories and Their Use in Prediction , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Lily Lee,et al.  Monitoring Activities from Multiple Video Streams: Establishing a Common Coordinate Frame , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  D HagerGregory,et al.  Probabilistic Data Association Methods for Tracking Complex Visual Objects , 2001 .

[24]  Alex Pentland,et al.  Pfinder: Real-Time Tracking of the Human Body , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Quming Zhou,et al.  Tracking and Classifying Moving Objects from Video , 2001 .

[26]  Sascha Spors,et al.  Joint audio-video object localization and tracking , 2001 .

[27]  K.D. Baker,et al.  Efficient image gradient-based object localisation and recognition , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[28]  Jake K. Aggarwal,et al.  Tracking Human Motion in Structured Environments Using a Distributed-Camera System , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  James W. Davis,et al.  The Recognition of Human Movement Using Temporal Templates , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Jake K. Aggarwal,et al.  Tracking human motion using multiple cameras , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[31]  Hironobu Fujiyoshi,et al.  Moving target classification and tracking from real-time video , 1998, Proceedings Fourth IEEE Workshop on Applications of Computer Vision. WACV'98 (Cat. No.98EX201).

[32]  W. Eric L. Grimson,et al.  Learning Patterns of Activity Using Real-Time Tracking , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Gerhard Rigoll,et al.  Person tracking in real-world scenarios using statistical methods , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).