Integration of full divertor detachment with improved core confinement for tokamak fusion plasmas

[1]  R. Dux,et al.  Developments towards an ELM-free pedestal radiative cooling scenario using noble gas seeding in ASDEX Upgrade , 2020, Nuclear Fusion.

[2]  G. Staebler,et al.  Progress in extending high poloidal beta scenarios on DIII-D towards a steady-state fusion reactor and impact of energetic particles , 2020, Nuclear Fusion.

[3]  S. Reichert Inside ITER , 2020, Nature Physics.

[4]  The way ahead for fusion , 2020, Nature.

[5]  M. Barbarino A brief history of nuclear fusion , 2020, Nature Physics.

[6]  T. Osborne,et al.  Improved core-edge compatibility using impurity seeding in the small angle slot (SAS) divertor at DIII-D , 2020, Physics of Plasmas.

[7]  A. Leonard,et al.  Separating divertor closure effects on divertor detachment and pedestal shape in DIII-D , 2020 .

[8]  G. Staebler,et al.  Transport at high βp and development of candidate steady state scenarios for ITER , 2020, Nuclear Fusion.

[9]  A. Garofalo,et al.  Role of Microtearing Turbulence in DIII-D High Bootstrap Current Fraction Plasmas. , 2019, Physical review letters.

[10]  B. Grierson,et al.  The dominant micro-turbulence instabilities in the lower q95 high βp plasmas on DIII-D and predict-first extrapolation , 2019, Nuclear Fusion.

[11]  G. Akkermans,et al.  Investigating the effect of different impurities on plasma detachment in linear plasma machine Magnum-PSI , 2019, Physics of Plasmas.

[12]  V. Rozhansky,et al.  Physics basis for the first ITER tungsten divertor , 2019, Nuclear Materials and Energy.

[13]  T. Petrie,et al.  High fusion performance in Super H-mode experiments on Alcator C-Mod and DIII-D , 2019, Nuclear Fusion.

[14]  C. Petty DIII-D research towards establishing the scientific basis for future fusion reactors , 2019, Nuclear Fusion.

[15]  A. M. Garofalo,et al.  Recent advances in EAST physics experiments in support of steady-state operation for ITER and CFETR , 2019, Nuclear Fusion.

[16]  G. Tynan,et al.  Hydronitrogen Molecular Assisted Recombination (HN-MAR) process in ammonia seeded deuterium plasmas , 2019, Nuclear Materials and Energy.

[17]  A. Leonard,et al.  The effect of divertor closure on detachment onset in DIII-D , 2019, Nuclear Materials and Energy.

[18]  S. Voskoboynikov,et al.  On mechanisms of impurity leakage and retention in the tokamak divertor , 2019, Plasma Physics and Controlled Fusion.

[19]  T. Osborne,et al.  Effects of divertor geometry on H-mode pedestal structure in attached and detached plasmas in the DIII-D tokamak , 2018, Nuclear Fusion.

[20]  P. Stangeby Basic physical processes and reduced models for plasma detachment , 2018 .

[21]  G. Staebler,et al.  Shafranov shift bifurcation of turbulent transport in the high βp scenario on DIII-D , 2017, Nuclear Fusion.

[22]  G. Staebler,et al.  Transport barriers in bootstrap-driven tokamaks , 2017 .

[23]  J. Contributors,et al.  Power exhaust by SOL and pedestal radiation at ASDEX Upgrade and JET , 2017 .

[24]  T. Lunt,et al.  The High-field Side High Density Region in SOLPS-Modeling of Nitrogen-seeded H-Modes in ASDEX Upgrade , 2017 .

[25]  R. Goldston,et al.  A new scaling for divertor detachment , 2017 .

[26]  G. Staebler,et al.  Advances in the high bootstrap fraction regime on DIII-D towards the Q  =  5 mission of ITER steady state , 2017 .

[27]  C. Holcomb,et al.  Scenario development for high βp low torque plasma with qmin above 2 and large-radius internal transport barrier in DIII-D , 2017 .

[28]  M. Reinke Heat flux mitigation by impurity seeding in high-field tokamaks , 2017 .

[29]  G. Staebler,et al.  Investigation of energy transport in DIII-D High-βP EAST-demonstration discharges with the TGLF turbulent and NEO neoclassical transport models , 2017 .

[30]  E. A. Belli,et al.  A high-accuracy Eulerian gyrokinetic solver for collisional plasmas , 2016, J. Comput. Phys..

[31]  S. Ding Confinement improvement in the high poloidal beta regime on DIII-D and application to steady-state H-mode on EAST , 2016 .

[32]  Q. Ren Progress Toward Steady State Tokamak Operation Exploiting the high bootstrap current fraction regime , 2015 .

[33]  L. L. Lao,et al.  Compatibility of internal transport barrier with steady-state operation in the high bootstrap fraction regime on DIII-D , 2015, Nuclear Fusion.

[34]  L. Giannone,et al.  Partial detachment of high power discharges in ASDEX Upgrade , 2015 .

[35]  Ulrich Stroth,et al.  Divertor studies in nitrogen induced completely detached H-modes in full tungsten ASDEX Upgrade , 2015 .

[36]  T. Osborne,et al.  Compatibility of detached divertor operation with robust edge pedestal performance , 2014 .

[37]  Gang Xu,et al.  A long-pulse high-confinement plasma regime in the Experimental Advanced Superconducting Tokamak , 2013, Nature Physics.

[38]  T. Osborne,et al.  Initial results of the high resolution edge Thomson scattering upgrade at DIII-D. , 2012, The Review of scientific instruments.

[39]  Kiyoshi Itami,et al.  Investigations of impurity seeding and radiation control for long-pulse and high-density H-mode plasmas in JT-60U , 2009 .

[40]  E. Joffrin,et al.  Chapter 6: Steady state operation , 2007 .

[41]  T. Fujita,et al.  Chapter 2: Plasma confinement and transport , 2007 .

[42]  Keith H. Burrell,et al.  Edge stability and transport control with resonant magnetic perturbations in collisionless tokamak plasmas , 2006 .

[43]  J. Luxon A Brief Introduction to the DIII-D Tokamak , 2005 .

[44]  G. Bateman,et al.  The tokamak Monte Carlo fast ion module NUBEAM in the National Transport Code Collaboration library , 2004 .

[45]  Hiroshi Shirai,et al.  Relationship between particle and heat transport in JT-60U plasmas with internal transport barrier , 2003 .

[46]  H. Shirai,et al.  High radiation and high density experiments in JT-60U , 2001 .

[47]  R. Maingi,et al.  Electric field-induced plasma convection in tokamak divertors , 2000 .

[48]  C. Gormezano,et al.  High performance tokamak operation regimes , 1999 .

[49]  O. Sauter,et al.  Neoclassical conductivity and bootstrap current formulas for general axisymmetric equilibria and arbitrary collisionality regime , 1999 .

[50]  J. R. Martin-Solis,et al.  Plasma detachment in JET Mark I divertor experiments , 1998 .

[51]  R. Budny,et al.  ACHIEVEMENT OF HIGH FUSION PERFORMANCE IN JT-60U REVERSED SHEAR DISCHARGES , 1997 .

[52]  Troppmann,et al.  Observation of continuous divertor detachment in H-mode discharges in ASDEX upgrade. , 1995, Physical review letters.

[53]  Tsuji,et al.  Internal transport barrier on q=3 surface and poloidal plasma spin up in JT-60U high- beta p discharges. , 1994, Physical review letters.

[54]  G. L. Campbell,et al.  Design and operation of the multipulse Thomson scattering diagnostic on DIII‐D (invited) , 1992 .

[55]  D. N. Hill,et al.  Langmuir probe array for the DIII-D divertor , 1990 .

[56]  Bruce Lipschultz,et al.  Review of MARFE phenomena in tokamaks , 1987 .

[57]  K. Burrell,et al.  Multichordal charge‐exchange recombination spectroscopy on the DIII‐D tokamak , 1986 .

[58]  L. Lao,et al.  Reconstruction of current profile parameters and plasma shapes in tokamaks , 1985 .

[59]  K. D. Lee,et al.  Formation of the internal transport barrier in KSTAR , 2017 .

[60]  D. Brower,et al.  Joint DIII-D/EAST research on the development of a high poloidal beta scenario for the steady state missions of ITER and CFETR , 2017 .

[61]  M. Beurskens,et al.  The role of the density profile in the ASDEX-Upgrade pedestal structure , 2016 .

[62]  S. Vukosavic Steady-State Operation , 2013 .

[63]  R. C. Wolf,et al.  Internal transport barriers in tokamak plasmas , 2003 .

[64]  P. Stangeby,et al.  The Plasma Boundary of Magnetic Fusion Devices , 2000 .

[65]  ITER Physics Basis Editors,et al.  Chapter 2: Plasma confinement and transport , 1999 .