Algebraic Flux Correction and Geometric Conservation in ALE Computations

In this chapter, we describe the important role played by the so-called Geometric Conservation Law (GCL) in the design of Flux-Corrected Transport (FCT) methods for Arbitrary Lagrangian-Eulerian (ALE) applications. We propose a conservative synchronized remap algorithm applicable to arbitrary Lagrangian-Eulerian computations with nodal finite elements. Unique to the proposed method is the direct incorporation of the geometric conservation law (GCL) in the resulting numerical scheme. We show how the geometric conservation law allows the proposed method to inherit the positivity preserving and local extrema diminishing (LED) properties typical of FCT schemes for pure transport problems. The extension to systems of equations which typically arise in meteorological and compressible flow computations is performed by means of a synchronized strategy. The proposed approach also complements and extends the work of the first author on nodal-based methods for shock hydrodynamics, delivering a fully integrated suite of Lagrangian/remap algorithms for computations of compressible materials under extreme load conditions. Numerical tests in multiple dimensions show that the method is robust and accurate in typical computational scenarios.

[1]  Charbel Farhat,et al.  Geometric conservation laws for flow problems with moving boundaries and deformable meshes, and their impact on aeroelastic computations , 1996 .

[2]  Thomas J. R. Hughes,et al.  Stabilized shock hydrodynamics: I. A Lagrangian method , 2007 .

[3]  L. Margolin,et al.  MPDATA: A Finite-Difference Solver for Geophysical Flows , 1998 .

[4]  Stefan Turek,et al.  Flux correction tools for finite elements , 2002 .

[5]  Fabio Nobile,et al.  A Stability Analysis for the Arbitrary Lagrangian Eulerian Formulation with Finite Elements , 1999 .

[6]  Mikhail Shashkov,et al.  The error‐minimization‐based rezone strategy for arbitrary Lagrangian‐Eulerian methods , 2006 .

[7]  E. Ramm,et al.  Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows , 2007 .

[8]  Mikhail Shashkov,et al.  The repair paradigm and application to conservation laws , 2004 .

[9]  Len G. Margolin,et al.  Second-order sign-preserving conservative interpolation (remapping) on general grids , 2003 .

[10]  D. Benson An efficient, accurate, simple ALE method for nonlinear finite element programs , 1989 .

[11]  R. Garimella,et al.  Untangling of 2D meshes in ALE simulations , 2004 .

[12]  Dmitri Kuzmin,et al.  A positivity-preserving ALE finite element scheme for convection-diffusion equations in moving domains , 2011, J. Comput. Phys..

[13]  Stefan Turek,et al.  High-resolution FEM?FCT schemes for multidimensional conservation laws , 2004 .

[14]  Jay P. Boris,et al.  Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works , 1973 .

[15]  Guglielmo Scovazzi,et al.  Stabilized shock hydrodynamics: II. Design and physical interpretation of the SUPG operator for Lagrangian computations☆ , 2007 .

[16]  Thomas J. R. Hughes,et al.  A space-time Galerkin/least-squares finite element formulation of the Navier-Stokes equations for moving domain problems , 1997 .

[17]  Stefan Turek,et al.  Flux-corrected transport : principles, algorithms, and applications , 2005 .

[18]  John K. Dukowicz,et al.  Accurate conservative remapping (rezoning) for arbitrary Lagrangian-Eulerian computations , 1987 .

[19]  L. Sedov Similarity and Dimensional Methods in Mechanics , 1960 .

[20]  S. Zalesak Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .

[21]  Peter Wriggers,et al.  Advection approaches for single- and multi-material arbitrary Lagrangian–Eulerian finite element procedures , 2006 .

[22]  J. Boris,et al.  Flux-Corrected Transport , 1997 .

[23]  A. Jameson Computational algorithms for aerodynamic analysis and design , 1993 .

[24]  Rolf Stenberg,et al.  Numerical Mathematics and Advanced Applications ENUMATH 2017 , 2019, Lecture Notes in Computational Science and Engineering.

[25]  J. Boris,et al.  Flux-corrected transport. III. Minimal-error FCT algorithms , 1976 .

[26]  Pavel Váchal,et al.  Sequential Flux-Corrected Remapping for ALE Methods , 2006 .

[27]  B. Hulme Discrete Galerkin and related one-step methods for ordinary differential equations , 1972 .

[28]  John K. Dukowicz,et al.  Incremental Remapping as a Transport/Advection Algorithm , 2000 .

[29]  William J. Rider,et al.  A conservative nodal variational multiscale method for Lagrangian shock hydrodynamics , 2010 .

[30]  David J. Benson,et al.  Momentum advection on a staggered mesh , 1992 .

[31]  John N. Shadid,et al.  Failsafe flux limiting and constrained data projections for equations of gas dynamics , 2010, J. Comput. Phys..

[32]  O. C. Zienkiewicz,et al.  The solution of non‐linear hyperbolic equation systems by the finite element method , 1984 .

[33]  Antony Jameson,et al.  Positive schemes and shock modelling for compressible flows , 1995 .

[34]  Jérôme Breil,et al.  A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction , 2010, J. Comput. Phys..

[35]  Ricardo H. Nochetto,et al.  Time-discrete higher order ALE formulations: a priori error analysis , 2013, Numerische Mathematik.

[36]  Peter Monk,et al.  Continuous finite elements in space and time for the heat equation , 1989 .

[37]  Guglielmo Scovazzi,et al.  A geometrically-conservative, synchronized, flux-corrected remap for arbitrary Lagrangian-Eulerian computations with nodal finite elements , 2011, J. Comput. Phys..

[38]  C. W. Hirt,et al.  An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .

[39]  K. Morgan,et al.  FEM-FCT - Combining unstructured grids with high resolution. [Flux Corrected Transport , 1988 .

[40]  Pierre Jamet Stability and Convergence of a Generalized Crank-Nicolson Scheme on a Variable Mesh for the Heat Equation , 1980 .

[41]  C.A.J. Fletcher,et al.  The group finite element formulation , 1983 .

[42]  Stefan Turek,et al.  Multidimensional FEM‐FCT schemes for arbitrary time stepping , 2003 .

[43]  J. Peraire,et al.  Finite Element Flux-Corrected Transport (FEM-FCT) for the Euler and Navier-Stokes equations , 1987 .

[44]  Guglielmo Scovazzi,et al.  Galilean invariance and stabilized methods for compressible flows , 2007 .

[45]  Guglielmo Scovazzi,et al.  A generalized view on Galilean invariance in stabilized compressible flow computations , 2010 .

[46]  Pavel Váchal,et al.  Optimization-based synchronized flux-corrected conservative interpolation (remapping) of mass and momentum for arbitrary Lagrangian-Eulerian methods , 2010, J. Comput. Phys..

[47]  J. Halleux,et al.  An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions , 1982 .

[48]  A. Jameson ANALYSIS AND DESIGN OF NUMERICAL SCHEMES FOR GAS DYNAMICS, 1: ARTIFICIAL DIFFUSION, UPWIND BIASING, LIMITERS AND THEIR EFFECT ON ACCURACY AND MULTIGRID CONVERGENCE , 1995 .

[49]  Jérôme Breil,et al.  A cell‐centred arbitrary Lagrangian–Eulerian (ALE) method , 2008 .

[50]  Guglielmo Scovazzi,et al.  On the angular momentum conservation and incremental objectivity properties of a predictor/multi-corrector method for Lagrangian shock hydrodynamics , 2009 .

[51]  John N. Shadid,et al.  Failsafe ux limiting and constrained data projections for systems of conservation laws , 2010 .

[52]  Guglielmo Scovazzi,et al.  A discourse on Galilean invariance, SUPG stabilization, and the variational multiscale framework , 2007 .

[53]  L. Formaggia,et al.  Stability analysis of second-order time accurate schemes for ALE-FEM , 2004 .

[54]  Raphaël Loubère,et al.  A subcell remapping method on staggered polygonal grids for arbitrary-Lagrangian-Eulerian methods , 2005 .

[55]  Jérôme Breil,et al.  Hybrid remap for multi-material ALE , 2011 .

[56]  Raphaël Loubère,et al.  ReALE: A Reconnection Arbitrary-Lagrangian―Eulerian method in cylindrical geometry , 2011 .

[57]  Dmitri Kuzmin,et al.  Explicit and implicit FEM-FCT algorithms with flux linearization , 2009, J. Comput. Phys..

[58]  D. Benson Computational methods in Lagrangian and Eulerian hydrocodes , 1992 .

[59]  David L. Book,et al.  Flux-corrected transport II: Generalizations of the method , 1975 .

[60]  Raphaël Loubère,et al.  ReALE: A reconnection-based arbitrary-Lagrangian-Eulerian method , 2010, J. Comput. Phys..