Current path in light emitting diodes based on nanowire ensembles

Light emitting diodes (LEDs) have been fabricated using ensembles of free-standing (In, Ga)N/GaN nanowires (NWs) grown on Si substrates in the self-induced growth mode by molecular beam epitaxy. Electron-beam-induced current analysis, cathodoluminescence as well as biased μ-photoluminescence spectroscopy, transmission electron microscopy, and electrical measurements indicate that the electroluminescence of such LEDs is governed by the differences in the individual current densities of the single-NW LEDs operated in parallel, i.e. by the inhomogeneity of the current path in the ensemble LED. In addition, the optoelectronic characterization leads to the conclusion that these NWs exhibit N-polarity and that the (In, Ga)N quantum well states in the NWs are subject to a non-vanishing quantum confined Stark effect.

[1]  Michael N. Fairchild,et al.  GaN nanowire light emitting diodes based on templated and scalable nanowire growth , 2009 .

[2]  K. Kishino,et al.  InGaN/GaN Multiple Quantum Disk Nanocolumn Light-Emitting Diodes Grown on (111) Si Substrate , 2004 .

[3]  J. Ristić,et al.  Polarity determination by electron energy-loss spectroscopy: application to ultra-small III-nitride semiconductor nanocolumns , 2011, Nanotechnology.

[4]  P. Gilet,et al.  GaN‐based nanowires: From nanometric‐scale characterization to light emitting diodes , 2010 .

[5]  O. Urakawa,et al.  Small - , 2007 .

[6]  Le Si Dang,et al.  Submicrometre resolved optical characterization of green nanowire-based light emitting diodes , 2011, Nanotechnology.

[7]  R. Beresford,et al.  The effect of the III/V ratio and substrate temperature on the morphology and properties of GaN- and AlN-layers grown by molecular beam epitaxy on Si(1 1 1) , 1998 .

[8]  S. Höfling,et al.  Structural and optical properties of InGaN-GaN nanowire heterostructures grown by molecular beam epitaxy , 2011 .

[9]  H. Lüth,et al.  Interface and wetting layer effect on the catalyst-free nucleation and growth of GaN nanowires. , 2008, Small.

[10]  R Armitage,et al.  Multicolour luminescence from InGaN quantum wells grown over GaN nanowire arrays by molecular-beam epitaxy , 2010, Nanotechnology.

[11]  W. Eccleston,et al.  Mater. Res. Soc. Symp. Proc. , 2006 .

[12]  M. Stutzmann,et al.  Optical properties of Si- and Mg-doped gallium nitride nanowires grown by plasma-assisted molecular beam epitaxy , 2008 .

[13]  M. Stutzmann,et al.  Nucleation and growth of GaN nanorods on Si (111) surfaces by plasma-assisted molecular beam epitaxy - The influence of Si- and Mg-doping , 2008 .

[14]  B. Krauskopf,et al.  Proc of SPIE , 2003 .

[15]  Hiroto Sekiguchi,et al.  Random laser action in GaN nanocolumns , 2010 .

[16]  P. Meredith,et al.  Electronic and optoelectronic materials and devices inspired by nature , 2013, Reports on progress in physics. Physical Society.

[17]  C. Humphreys Solid-State Lighting , 2008 .

[18]  Hiroto Sekiguchi,et al.  Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate , 2010 .

[19]  D. Kim,et al.  High-Brightness Light Emitting Diodes Using Dislocation-Free Indium Gallium Nitride/Gallium Nitride Multiquantum-Well Nanorod Arrays , 2004 .

[20]  A. Waag,et al.  The nanorod approach: GaN NanoLEDs for solid state lighting , 2011 .

[21]  Hiroto Sekiguchi,et al.  InGaN/GaN nanocolumn LEDs emitting from blue to red , 2007, SPIE OPTO.

[22]  H. Morkoç,et al.  Luminescence properties of defects in GaN , 2005 .

[23]  Toma Stoica,et al.  Influence of the adatom diffusion on selective growth of GaN nanowire regular arrays , 2011 .

[24]  Achim Trampert,et al.  Nitride nanowire structures for LED applications , 2011, OPTO.

[25]  V. Consonni,et al.  Nucleation and coalescence effects on the density of self-induced GaN nanowires grown by molecular beam epitaxy , 2011 .

[26]  M. Eickhoff,et al.  Polarity assignment in ZnTe, GaAs, ZnO, and GaN-AlN nanowires from direct dumbbell analysis. , 2012, Nano letters.

[27]  J. Gilman,et al.  Nanotechnology , 2001 .

[28]  H. Lüth,et al.  Raman scattering of phonon-plasmon coupled modes in self-assembled GaN nanowires , 2009 .

[29]  A. Waag,et al.  GaN based nanorods for solid state lighting , 2012 .

[30]  A. Griol,et al.  Growth, morphology, and structural properties of group‐III‐nitride nanocolumns and nanodisks , 2007 .

[31]  Y. Désières,et al.  Optical anisotropy and light extraction efficiency of MBE grown GaN nanowires epilayers. , 2011, Optics express.

[32]  Todd E. Harvey,et al.  Controlled Nucleation of GaN Nanowires Grown with Molecular Beam Epitaxy , 2010 .

[33]  P. Robinson,et al.  Effects of disorder on wave propagation in two-dimensional photonic crystals. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[34]  In-Kag Hwang,et al.  Analysis of Disordered Photonic Crystal Implemented in Light-Emitting Diode for High Light Extraction Efficiency , 2008 .

[35]  P. Bhattacharya,et al.  Auger recombination in III-nitride nanowires and its effect on nanowire light-emitting diode characteristics. , 2011, Nano letters.

[36]  Pallab Bhattacharya,et al.  Enhanced photoluminescence from embedded PbSe colloidal quantum dots in silicon-based random photonic crystal microcavities , 2008 .

[37]  K. Thonke,et al.  Light-emitting diode based on mask- and catalyst-free grown N-polar GaN nanorods , 2011, Nanotechnology.

[38]  M. Marso,et al.  Doping concentration of GaN nanowires determined by opto-electrical measurements. , 2008, Nano letters.

[39]  T. Schumann,et al.  Selective-area catalyst-free MBE growth of GaN nanowires using a patterned oxide layer , 2011, Nanotechnology.

[40]  M. Hanke,et al.  Nucleation mechanisms of self-induced GaN nanowires grown on an amorphous interlayer , 2011 .

[41]  Lars Samuelson,et al.  One-dimensional heterostructures in semiconductor nanowhiskers , 2002 .

[42]  Bruno Gayral,et al.  Quantum-confined Stark effect in GaN/AlN quantum dots in nanowires , 2009 .

[43]  S. Gwo,et al.  InGaN/GaN nanorod array white light-emitting diode , 2010 .

[44]  K. Kishino,et al.  Near-Infrared InGaN Nanocolumn Light-Emitting Diodes Operated at 1.46 µm , 2012 .

[45]  V. Bright,et al.  Effect of AlN buffer layer properties on the morphology and polarity of GaN nanowires grown by molecular beam epitaxy , 2011 .

[46]  T. Gotschke,et al.  The influence of Mg doping on the nucleation of self-induced GaN nanowires , 2012 .

[47]  C. T. Foxon,et al.  Defect reduction in GaN/(0001)sapphire films grown by molecular beam epitaxy using nanocolumn intermediate layers , 2008 .

[48]  O. Brandt,et al.  Analyzing the growth of InxGa1−xN/GaN superlattices in self-induced GaN nanowires by x-ray diffraction , 2011 .

[49]  Oliver Brandt,et al.  Coexistence of quantum-confined Stark effect and localized states in an (In,Ga)N/GaN nanowire heterostructure , 2011, 1109.6039.

[50]  S. Reitzenstein,et al.  Properties of GaN Nanowires Grown by Molecular Beam Epitaxy , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[51]  H. Renevier,et al.  Polarity of GaN nanowires grown by plasma-assisted molecular beam epitaxy on Si(111) , 2011 .

[52]  R. Calarco,et al.  Doping of III-Nitride Nanowires Grown by Molecular Beam Epitaxy , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[53]  G A Botton,et al.  p-Type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111). , 2011, Nano letters.

[54]  H. Lüth,et al.  Mechanism of molecular beam epitaxy growth of GaN nanowires on Si(111) , 2007 .

[55]  H. Lüth,et al.  Nucleation and growth of GaN nanowires on Si(111) performed by molecular beam epitaxy. , 2007, Nano letters.

[56]  Christopher Hahn,et al.  Epitaxial growth of InGaN nanowire arrays for light emitting diodes. , 2011, ACS nano.

[57]  P. Bhattacharya,et al.  Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy. , 2010, Nano letters.

[58]  Morphology and optical properties of Mg doped GaN nanowires in dependence of growth temperature , 2010 .