A Fast Algorithm for Fourier Continuation
暂无分享,去创建一个
[1] Mark Lyon,et al. High-order unconditionally stable FC-AD solvers for general smooth domains I. Basic elements , 2010, J. Comput. Phys..
[2] Gilbert Strang,et al. The Discrete Cosine Transform , 1999, SIAM Rev..
[3] H. Whitney. Analytic Extensions of Differentiable Functions Defined in Closed Sets , 1934 .
[4] J. Boyd. A Comparison of Numerical Algorithms for Fourier Extension of the First, Second, and Third Kinds , 2002 .
[5] V. Rokhlin,et al. A fast randomized algorithm for the approximation of matrices ✩ , 2007 .
[6] John P. Boyd,et al. Exponentially-convergent strategies for defeating the Runge Phenomenon for the approximation of non-periodic functions, part two: Multi-interval polynomial schemes and multidomain Chebyshev interpolation , 2011 .
[7] Anne Gelb,et al. Robust reprojection methods for the resolution of the Gibbs phenomenon , 2006 .
[8] C. Fefferman,et al. Fitting a Cm-Smooth Function to Data , 2005 .
[9] Petros Drineas,et al. FAST MONTE CARLO ALGORITHMS FOR MATRICES II: COMPUTING A LOW-RANK APPROXIMATION TO A MATRIX∗ , 2004 .
[10] Peter D. Lax,et al. The computation of discontinuous solutions of linear hyperbolic equations , 1978 .
[11] Alex Solomonoff,et al. On the Gibbs phenomenon I: recovering exponential accuracy from the Fourier partial sum of a nonperiodic analytic function , 1992 .
[12] A. Duijndam,et al. Nonuniform Fast Fourier Transform , 1997 .
[13] Alan M. Frieze,et al. Fast Monte-Carlo algorithms for finding low-rank approximations , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).
[14] A.,et al. FAST FOURIER TRANSFORMS FOR NONEQUISPACED DATA * , .
[15] Nathan Albin,et al. A spectral FC solver for the compressible Navier-Stokes equations in general domains I: Explicit time-stepping , 2011, J. Comput. Phys..
[16] Tobin A. Driscoll,et al. A Padé-based algorithm for overcoming the Gibbs phenomenon , 2004, Numerical Algorithms.
[17] M. Hestenes,et al. Extension of the range of a differentiable function , 1941 .
[19] Daan Huybrechs,et al. On the Fourier Extension of Nonperiodic Functions , 2010, SIAM J. Numer. Anal..
[20] C. Fefferman. Fitting a Cm-smooth function to data, III , 2009 .
[21] Philipp Birken,et al. Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.
[22] Mark Lyon,et al. High-order unconditionally stable FC-AD solvers for general smooth domains II. Elliptic, parabolic and hyperbolic PDEs; theoretical considerations , 2010, J. Comput. Phys..
[23] Jared Tanner,et al. Optimal filter and mollifier for piecewise smooth spectral data , 2006, Math. Comput..
[24] Leslie Greengard,et al. Accelerating the Nonuniform Fast Fourier Transform , 2004, SIAM Rev..
[25] Jeffrey A. Fessler,et al. Nonuniform fast Fourier transforms using min-max interpolation , 2003, IEEE Trans. Signal Process..
[26] Eitan Tadmor,et al. Recovering Pointwise Values of Discontinuous Data within Spectral Accuracy , 1985 .
[27] Oscar P. Bruno,et al. Accurate, high-order representation of complex three-dimensional surfaces via Fourier continuation analysis , 2007, J. Comput. Phys..
[28] Steven G. Johnson,et al. The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.
[29] Petros Drineas,et al. FAST MONTE CARLO ALGORITHMS FOR MATRICES III: COMPUTING A COMPRESSED APPROXIMATE MATRIX DECOMPOSITION∗ , 2004 .
[30] C. Fefferman. Whitney’s extension problems and interpolation of data , 2008 .
[31] Andrew J. Majda,et al. The Fourier method for nonsmooth initial data , 1978 .
[32] Antony Ware,et al. Fast Approximate Fourier Transforms for Irregularly Spaced Data , 1998, SIAM Rev..
[33] Oscar P. Bruno,et al. Fast, High-Order, High-Frequency Integral Methods for Computational Acoustics and Electromagnetics , 2003 .
[34] Qing Huo Liu,et al. The Regular Fourier Matrices and Nonuniform Fast Fourier Transforms , 1999, SIAM J. Sci. Comput..
[35] Per-Gunnar Martinsson,et al. Randomized algorithms for the low-rank approximation of matrices , 2007, Proceedings of the National Academy of Sciences.