Efficient gradient field generation providing a multi-dimensional arbitrary shifted field-free point for magnetic particle imaging

Magnetic Particle Imaging (MPI) is a tomographic imaging modality capable to visualize tracers using magnetic fields. A high magnetic gradient strength is mandatory, to achieve a reasonable image quality. Therefore, a power optimization of the coil configuration is essential. In order to realize a multi-dimensional efficient gradient field generator, the following improvements compared to conventionally used Maxwell coil configurations are proposed: (i) curved rectangular coils, (ii) interleaved coils, and (iii) multi-layered coils. Combining these adaptions results in total power reduction of three orders of magnitude, which is an essential step for the feasibility of building full-body human MPI scanners.

[1]  J. P. Reilly,et al.  Magnetic field excitation of peripheral nerves and the heart: a comparison of thresholds , 1991, Medical and Biological Engineering and Computing.

[2]  Tobias Knopp,et al.  Magnetic Particle Imaging durch Superparamagnetische Nanopartikel zur Sentinellymphknotendetektion beim Mammakarzinom , 2011 .

[3]  Bernhard Gleich,et al.  Perspectives on clinical magnetic particle imaging , 2013, Biomedizinische Technik. Biomedical engineering.

[4]  B Gleich,et al.  Nanoparticle encapsulation in red blood cells enables blood-pool magnetic particle imaging hours after injection , 2013, Physics in medicine and biology.

[5]  K. Krishnan Biomedical Nanomagnetics: A Spin Through Possibilities in Imaging, Diagnostics, and Therapy , 2010, IEEE Transactions on Magnetics.

[6]  Jochen Franke,et al.  On the formulation of the image reconstruction problem in magnetic particle imaging , 2013, Biomedizinische Technik. Biomedical engineering.

[7]  Thorsten M Buzug,et al.  Improved field free line magnetic particle imaging using saddle coils , 2013, Biomedizinische Technik. Biomedical engineering.

[8]  Bernhard Gleich,et al.  Signal encoding in magnetic particle imaging: properties of the system function , 2009, BMC Medical Imaging.

[9]  T. M. Buzug,et al.  Efficient Magnetic Gradient Field Generation With Arbitrary Axial Displacement for Magnetic Particle Imaging , 2012, IEEE Magnetics Letters.

[10]  Bernhard Gleich,et al.  2D model-based reconstruction for magnetic particle imaging. , 2010, Medical physics.

[11]  Patrick W. Goodwill,et al.  Multidimensional X-Space Magnetic Particle Imaging , 2011, IEEE Transactions on Medical Imaging.

[12]  Thorsten M. Buzug,et al.  Single-sided device for magnetic particle imaging , 2009 .

[13]  Olaf Dössel,et al.  Safety considerations for magnetic fields of 10 mT to 100 mT amplitude in the frequency range of 10 kHz to 100 kHz for magnetic particle imaging , 2013, Biomedizinische Technik. Biomedical engineering.

[14]  Patrick W. Goodwill,et al.  Magnetostimulation Limits in Magnetic Particle Imaging , 2013, IEEE Transactions on Medical Imaging.

[15]  Bernhard Gleich,et al.  Tomographic imaging using the nonlinear response of magnetic particles , 2005, Nature.

[16]  Kannan M Krishnan,et al.  Tracer design for magnetic particle imaging (invited). , 2012, Journal of applied physics.

[17]  Thorsten M. Buzug,et al.  Experimental Validation of an Assembly of Optimized Curved Rectangular Coils for the Use in Dynamic Field Free Line Magnetic Particle Imaging , 2013 .