Mitochondrial Permeability Transition: A Molecular Lesion with Multiple Drug Targets.

[1]  T. Finkel,et al.  Cyclophilin D-mediated regulation of the permeability transition pore is altered in mice lacking the mitochondrial calcium uniporter , 2018, Cardiovascular research.

[2]  R. Ferrari,et al.  Discovery of Novel 1,3,8-Triazaspiro[4.5]decane Derivatives That Target the c Subunit of F1/FO-Adenosine Triphosphate (ATP) Synthase for the Treatment of Reperfusion Damage in Myocardial Infarction. , 2018, Journal of medicinal chemistry.

[3]  C. Baines,et al.  The still uncertain identity of the channel-forming unit(s) of the mitochondrial permeability transition pore. , 2018, Cell calcium.

[4]  Yukio Ando,et al.  Long-term effects of edaravone on survival of patients with amyotrophic lateral sclerosis , 2018, eNeurologicalSci.

[5]  Hyun-Jai Cho,et al.  Therapeutic Potential of a Novel Necrosis Inhibitor, 7-Amino-Indole, in Myocardial Ischemia–Reperfusion Injury , 2018, Hypertension.

[6]  S. Crooke,et al.  RNA-Targeted Therapeutics. , 2018, Cell metabolism.

[7]  E. Elmér,et al.  Cyclosporine before Coronary Artery Bypass Grafting Does Not Prevent Postoperative Decreases in Renal Function: A Randomized Clinical Trial , 2018, Anesthesiology.

[8]  V. Giorgio,et al.  The unique histidine in OSCP subunit of F‐ATP synthase mediates inhibition of the permeability transition pore by acidic pH , 2018, EMBO reports.

[9]  P. Oliveira,et al.  Discovery of a new mitochondria permeability transition pore (mPTP) inhibitor based on gallic acid , 2018, Journal of enzyme inhibition and medicinal chemistry.

[10]  C. Chinopoulos Mitochondrial permeability transition pore: Back to the drawing board , 2017, Neurochemistry International.

[11]  G. Porter,et al.  Cyclophilin D regulates the dynamic assembly of mitochondrial ATP synthase into synthasomes , 2017, Scientific Reports.

[12]  P. Bernardi,et al.  Alisporivir rescues defective mitochondrial respiration in Duchenne muscular dystrophy , 2017, Pharmacological research.

[13]  Ae Nim Pae,et al.  Discovery of non-peptidic small molecule inhibitors of cyclophilin D as neuroprotective agents in Aβ-induced mitochondrial dysfunction , 2017, Journal of Computer-Aided Molecular Design.

[14]  I. Fearnley,et al.  Permeability transition in human mitochondria persists in the absence of peripheral stalk subunits of ATP synthase , 2017, Proceedings of the National Academy of Sciences.

[15]  T. Nagayama,et al.  DS16570511 is a small-molecule inhibitor of the mitochondrial calcium uniporter , 2017, Cell Death Discovery.

[16]  M. Prunotto,et al.  Opportunities and challenges in phenotypic drug discovery: an industry perspective , 2017, Nature Reviews Drug Discovery.

[17]  Silvio C. E. Tosatto,et al.  Ca2+ binding to F‐ATP synthase β subunit triggers the mitochondrial permeability transition , 2017, EMBO reports.

[18]  Y. Itoyama,et al.  Safety and efficacy of edaravone in well defined patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled trial , 2017, The Lancet Neurology.

[19]  S. E. Jensen,et al.  Administration of the Mitochondrial Permeability Transition Pore Inhibitor, TRO40303, prior to Primary Percutaneous Coronary Intervention, Does Not Affect the Levels of Pro-Inflammatory Cytokines or Acute-Phase Proteins , 2017, Cardiology.

[20]  A. Satoh,et al.  A small-molecule DS44170716 inhibits Ca2+-induced mitochondrial permeability transition , 2017, Scientific Reports.

[21]  Guoxu Xu,et al.  The novel cyclophilin D inhibitor compound 19 protects retinal pigment epithelium cells and retinal ganglion cells from UV radiation. , 2017, Biochemical and biophysical research communications.

[22]  I. Fearnley,et al.  Persistence of the mitochondrial permeability transition in the absence of subunit c of human ATP synthase , 2017, Proceedings of the National Academy of Sciences.

[23]  J. Faraldo-Gómez,et al.  Atomistic simulations indicate the c-subunit ring of the F1Fo ATP synthase is not the mitochondrial permeability transition pore , 2017, eLife.

[24]  Heng Du,et al.  Cyclophilin D Promotes Brain Mitochondrial F1FO ATP Synthase Dysfunction in Aging Mice. , 2016, Journal of Alzheimer's disease : JAD.

[25]  R. Gazmuri,et al.  In vivo opening of the mitochondrial permeability transition pore in a rat model of ventricular fibrillation and closed-chest resuscitation. , 2017, American journal of translational research.

[26]  T. Heightman,et al.  Protein Degradation by In-Cell Self-Assembly of Proteolysis Targeting Chimeras , 2016, ACS central science.

[27]  M. Duchen,et al.  Identification of ER-000444793, a Cyclophilin D-independent inhibitor of mitochondrial permeability transition, using a high-throughput screen in cryopreserved mitochondria , 2016, Scientific Reports.

[28]  D. Goodlett,et al.  Normalization of NAD+ Redox Balance as a Therapy for Heart Failure , 2016, Circulation.

[29]  S. Nadtochiy,et al.  Cyclophilin D Knock-Out Mice Show Enhanced Resistance to Osteoporosis and to Metabolic Changes Observed in Aging Bone , 2016, PloS one.

[30]  L. Monassier,et al.  Targeting myocardial reperfusion injuries with cyclosporine in the CIRCUS Trial – pharmacological reasons for failure , 2016, Fundamental & clinical pharmacology.

[31]  R. Sutton,et al.  Small Molecule Inhibitors of Cyclophilin D To Protect Mitochondrial Function as a Potential Treatment for Acute Pancreatitis. , 2016, Journal of medicinal chemistry.

[32]  A. Halestrap,et al.  Quantification of active mitochondrial permeability transition pores using GNX-4975 inhibitor titrations provides insights into molecular identity , 2016, The Biochemical journal.

[33]  A. Maggioni,et al.  Cyclosporine A in Reperfused Myocardial Infarction: The Multicenter, Controlled, Open-Label CYCLE Trial. , 2016, Journal of the American College of Cardiology.

[34]  T. Chung,et al.  N‐Phenylbenzamides as Potent Inhibitors of the Mitochondrial Permeability Transition Pore , 2016, ChemMedChem.

[35]  Anuradha Roy,et al.  Identification of a Small Molecule Cyclophilin D Inhibitor for Rescuing Aβ-Mediated Mitochondrial Dysfunction. , 2016, ACS medicinal chemistry letters.

[36]  P. Diemunsch,et al.  Cyclosporine before PCI in Acute Myocardial Infarction. , 2016, The New England journal of medicine.

[37]  P. Bernardi,et al.  Cyclosporine before PCI in Acute Myocardial Infarction. , 2016, The New England journal of medicine.

[38]  Julia M. Hill,et al.  Selective Inhibition of the Mitochondrial Permeability Transition Pore Protects against Neurodegeneration in Experimental Multiple Sclerosis* , 2015, The Journal of Biological Chemistry.

[39]  Wen-Feng Cai,et al.  HAX-1 regulates cyclophilin-D levels and mitochondria permeability transition pore in the heart , 2015, Proceedings of the National Academy of Sciences.

[40]  P. Bernardi,et al.  Commentary: SPG7 is an essential and conserved component of the mitochondrial permeability transition pore , 2015, Front. Physiol..

[41]  S. Houser,et al.  SPG7 Is an Essential and Conserved Component of the Mitochondrial Permeability Transition Pore. , 2015, Molecular cell.

[42]  T. Chung,et al.  Discovery, Synthesis, and Optimization of Diarylisoxazole‐3‐carboxamides as Potent Inhibitors of the Mitochondrial Permeability Transition Pore , 2015, ChemMedChem.

[43]  C. Baines,et al.  Structural mechanisms of cyclophilin D-dependent control of the mitochondrial permeability transition pore. , 2015, Biochimica et biophysica acta.

[44]  N. Mewton,et al.  Cyclosporine before PCI in Patients with Acute Myocardial Infarction. , 2015, The New England journal of medicine.

[45]  B. Pillot,et al.  NVP019 POTENTLY INHIBITS CYCLOPHILIN D-DEPENDENT MITOCHONDRIAL PERMEABILITY TRANSITION IN HUMAN HEART AND REDUCES MYOCARDIAL INFARCT SIZE IN MICE , 2015 .

[46]  J. Molkentin,et al.  Physiological and pathological roles of the mitochondrial permeability transition pore in the heart. , 2015, Cell metabolism.

[47]  M. Jackson,et al.  Small Molecules Targeting the Mitochondrial Permeability Transition , 2015 .

[48]  Einar Heiberg,et al.  Effect of intravenous TRO40303 as an adjunct to primary percutaneous coronary intervention for acute ST-elevation myocardial infarction: MITOCARE study results. , 2015, European heart journal.

[49]  A. Halestrap,et al.  The mitochondrial permeability transition: a current perspective on its identity and role in ischaemia/reperfusion injury. , 2015, Journal of molecular and cellular cardiology.

[50]  L. Martin,et al.  Cellular Neuroscience , 2022 .

[51]  N. Maraldi,et al.  NIM811, a cyclophilin inhibitor without immunosuppressive activity, is beneficial in collagen VI congenital muscular dystrophy models. , 2014, Human molecular genetics.

[52]  N. Mewton,et al.  Cyclosporine Protects the Heart during Aortic Valve Surgery , 2014, Anesthesiology.

[53]  P. Pinton,et al.  The mitochondrial permeability transition pore is a dispensable element for mitochondrial calcium efflux , 2014, Cell calcium.

[54]  P. Licznerski,et al.  An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore , 2014, Proceedings of the National Academy of Sciences.

[55]  S. Minucci,et al.  Cinnamic anilides as new mitochondrial permeability transition pore inhibitors endowed with ischemia-reperfusion injury protective effect in vivo. , 2014, Journal of medicinal chemistry.

[56]  V. Giorgio,et al.  Channel Formation by Yeast F-ATP Synthase and the Role of Dimerization in the Mitochondrial Permeability Transition*♦ , 2014, The Journal of Biological Chemistry.

[57]  F. Ricchelli,et al.  Regulation of the Mitochondrial Permeability Transition Pore by the Outer Membrane Does Not Involve the Peripheral Benzodiazepine Receptor (Translocator Protein of 18 kDa (TSPO))* , 2014, The Journal of Biological Chemistry.

[58]  J. Molkentin,et al.  Genetic deletion of the mitochondrial phosphate carrier desensitizes the mitochondrial permeability transition pore and causes cardiomyopathy , 2014, Cell Death and Differentiation.

[59]  Koteswara Rao Valasani,et al.  Structure Based Design, Synthesis, Pharmacophore Modeling, Virtual Screening, and Molecular Docking Studies for Identification of Novel Cyclophilin D Inhibitors , 2014, J. Chem. Inf. Model..

[60]  S. Kolvekar,et al.  The effect of cyclosporin-A on peri-operative myocardial injury in adult patients undergoing coronary artery bypass graft surgery: a randomised controlled clinical trial , 2014, Heart.

[61]  Julia M. Barbarino,et al.  PharmGKB summary: cyclosporine and tacrolimus pathways , 2013, Pharmacogenetics and genomics.

[62]  N. Mewton,et al.  Depressing Mitochondria-Reticulum Interactions Protects Cardiomyocytes From Lethal Hypoxia-Reoxygenation Injury , 2013, Circulation.

[63]  E. Cheng,et al.  Bax and Bak function as the outer membrane component of the mitochondrial permeability pore in regulating necrotic cell death in mice , 2013, eLife.

[64]  S. Ghaffari,et al.  The effect of prethrombolytic cyclosporine-A injection on clinical outcome of acute anterior ST-elevation myocardial infarction. , 2013, Cardiovascular therapeutics.

[65]  V. Giorgio,et al.  Dimers of mitochondrial ATP synthase form the permeability transition pore , 2013, Proceedings of the National Academy of Sciences.

[66]  S. Passamonti,et al.  The mitochondrial permeability transition pore (PTP) - an example of multiple molecular exaptation? , 2012, Biochimica et biophysica acta.

[67]  U. Moll,et al.  p53 Opens the Mitochondrial Permeability Transition Pore to Trigger Necrosis , 2012, Cell.

[68]  M. Duchen,et al.  SCaMC-1 promotes cancer cell survival by desensitizing mitochondrial permeability transition via ATP/ADP-mediated matrix Ca2+ buffering , 2011, Cell Death and Differentiation.

[69]  E. Murphy,et al.  Cysteine 203 of Cyclophilin D Is Critical for Cyclophilin D Activation of the Mitochondrial Permeability Transition Pore* , 2011, The Journal of Biological Chemistry.

[70]  K. L. de Mesy Bentley,et al.  The permeability transition pore controls cardiac mitochondrial maturation and myocyte differentiation. , 2011, Developmental cell.

[71]  S. Uribe-Carvajal,et al.  Mitochondrial Unselective Channels throughout the eukaryotic domain. , 2011, Mitochondrion.

[72]  M. Brand,et al.  Assessing mitochondrial dysfunction in cells , 2011, The Biochemical journal.

[73]  Heng Du,et al.  Cyclophilin D deficiency improves mitochondrial function and learning/memory in aging Alzheimer disease mouse model , 2011, Neurobiology of Aging.

[74]  C. Baines,et al.  Complement 1q-binding protein inhibits the mitochondrial permeability transition pore and protects against oxidative stress-induced death. , 2011, The Biochemical journal.

[75]  D. Sinclair,et al.  Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy , 2010, Aging.

[76]  J. Molkentin,et al.  Debio-025 is more effective than prednisone in reducing muscular pathology in mdx mice , 2010, Neuromuscular Disorders.

[77]  U. Boelsterli,et al.  Pharmacologic targeting or genetic deletion of mitochondrial cyclophilin D protects from NSAID-induced small intestinal ulceration in mice. , 2010, Toxicological sciences : an official journal of the Society of Toxicology.

[78]  J. Farber,et al.  Cyclophilin D controls mitochondrial pore-dependent Ca(2+) exchange, metabolic flexibility, and propensity for heart failure in mice. , 2010, The Journal of clinical investigation.

[79]  E. Eisenmesser,et al.  Structural and Biochemical Characterization of the Human Cyclophilin Family of Peptidyl-Prolyl Isomerases , 2010, PLoS biology.

[80]  P. Bernardi,et al.  The mitochondrial permeability transition from yeast to mammals , 2010, FEBS letters.

[81]  Steven P Jones,et al.  TRO40303, a New Cardioprotective Compound, Inhibits Mitochondrial Permeability Transition , 2010, Journal of Pharmacology and Experimental Therapeutics.

[82]  P. Croisille,et al.  Effect of cyclosporine on left ventricular remodeling after reperfused myocardial infarction. , 2010, Journal of the American College of Cardiology.

[83]  P. Bernardi,et al.  Activation of mitochondrial ERK protects cancer cells from death through inhibition of the permeability transition , 2009, Proceedings of the National Academy of Sciences.

[84]  M. Crompton,et al.  Mitochondrial targeting of cyclosporin A enables selective inhibition of cyclophilin-D and enhanced cytoprotection after glucose and oxygen deprivation , 2009, The Biochemical journal.

[85]  Elena Bisetto,et al.  Cyclophilin D Modulates Mitochondrial F0F1-ATP Synthase by Interacting with the Lateral Stalk of the Complex* , 2009, The Journal of Biological Chemistry.

[86]  B. Padanilam,et al.  Cyclophilin D gene ablation protects mice from ischemic renal injury. , 2009, American journal of physiology. Renal physiology.

[87]  L. Martin,et al.  The mitochondrial permeability transition pore in motor neurons: Involvement in the pathobiology of ALS mice , 2009, Experimental Neurology.

[88]  P. Braghetta,et al.  The cyclophilin inhibitor Debio 025 normalizes mitochondrial function, muscle apoptosis and ultrastructural defects in Col6a1−/− myopathic mice , 2009, British journal of pharmacology.

[89]  N. Maraldi,et al.  EM.P.5.04 Genetic ablation of cyclophilin D rescues mitochondrial defects and prevents muscle apoptosis in collagen VI myopathic mice , 2009, Neuromuscular Disorders.

[90]  G. Fiskum,et al.  Cyclophilin D is expressed predominantly in mitochondria of γ‐aminobutyric acidergic interneurons , 2009, Journal of neuroscience research.

[91]  Z. Červinková,et al.  Tissue Specific Sensitivity of Mitochondrial Permeability Transition Pore to Ca2+ Ions. , 2009, Acta medica.

[92]  O. Dorchies,et al.  Investigation of Debio 025, a cyclophilin inhibitor, in the dystrophic mdx mouse, a model for Duchenne muscular dystrophy , 2008, British journal of pharmacology.

[93]  A. Halestrap,et al.  The Mitochondrial Phosphate Carrier Interacts with Cyclophilin D and May Play a Key Role in the Permeability Transition* , 2008, Journal of Biological Chemistry.

[94]  G. McKhann,et al.  Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer's disease , 2008, Nature Medicine.

[95]  P. Bernardi,et al.  Enhancement of anxiety, facilitation of avoidance behavior, and occurrence of adult-onset obesity in mice lacking mitochondrial cyclophilin D , 2008, Neuroscience.

[96]  Pierre Croisille,et al.  Effect of cyclosporine on reperfusion injury in acute myocardial infarction. , 2008, The New England journal of medicine.

[97]  P. Bonaldo,et al.  Altered threshold of the mitochondrial permeability transition pore in Ullrich congenital muscular dystrophy. , 2008, Biochimica et biophysica acta.

[98]  M. Duchen,et al.  Mitochondria and calcium in health and disease. , 2008, Cell calcium.

[99]  A. Ferlini,et al.  Cyclosporin A corrects mitochondrial dysfunction and muscle apoptosis in patients with collagen VI myopathies , 2008, Proceedings of the National Academy of Sciences.

[100]  H. Sweeney,et al.  Genetic and pharmacologic inhibition of mitochondrial-dependent necrosis attenuates muscular dystrophy , 2008, Nature Medicine.

[101]  D. Altieri,et al.  Regulation of Tumor Cell Mitochondrial Homeostasis by an Organelle-Specific Hsp90 Chaperone Network , 2007, Cell.

[102]  D. Bourdette,et al.  Cyclophilin D inactivation protects axons in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis , 2007, Proceedings of the National Academy of Sciences.

[103]  W. Craigen,et al.  Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death , 2007, Nature Cell Biology.

[104]  A. Baba,et al.  Edaravone, a radical scavenger, inhibits mitochondrial permeability transition pore in rat brain. , 2007, Journal of pharmacological sciences.

[105]  W. Craigen,et al.  Properties of the permeability transition in VDAC1(-/-) mitochondria. , 2006, Biochimica et biophysica acta.

[106]  S. Korsmeyer,et al.  Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[107]  Jeffrey Robbins,et al.  Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death , 2005, Nature.

[108]  Tetsuya Watanabe,et al.  Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death , 2005, Nature.

[109]  L. Argaud,et al.  Specific inhibition of the mitochondrial permeability transition prevents lethal reperfusion injury. , 2005, Journal of molecular and cellular cardiology.

[110]  E. Elmér,et al.  The Nonimmunosuppressive Cyclosporin Analogs NIM811 and UNIL025 Display Nanomolar Potencies on Permeability Transition in Brain-Derived Mitochondria , 2004, Journal of bioenergetics and biomembranes.

[111]  Dean P. Jones,et al.  The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore , 2004, Nature.

[112]  J. Kemp,et al.  The Voltage-dependent Anion Channel Is the Target for a New Class of Inhibitors of the Mitochondrial Permeability Transition Pore* , 2003, Journal of Biological Chemistry.

[113]  C. Reggiani,et al.  Mitochondrial dysfunction and apoptosis in myopathic mice with collagen VI deficiency , 2003, Nature Genetics.

[114]  K. G. Rajesh,et al.  Antioxidant MCI-186 inhibits mitochondrial permeability transition pore and upregulates Bcl-2 expression. , 2003, American journal of physiology. Heart and circulatory physiology.

[115]  Y. Ko,et al.  Mitochondrial ATP Synthasome , 2003, The Journal of Biological Chemistry.

[116]  T. Wieloch,et al.  Powerful cyclosporin inhibition of calcium-induced permeability transition in brain mitochondria , 2003, Brain Research.

[117]  Jake Jacobson,et al.  Imaging mitochondrial function in intact cells. , 2003, Methods in enzymology.

[118]  S. Harrison,et al.  Crystal structure of human calcineurin complexed with cyclosporin A and human cyclophilin , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[119]  A. Halestrap,et al.  Sanglifehrin A Acts as a Potent Inhibitor of the Mitochondrial Permeability Transition and Reperfusion Injury of the Heart by Binding to Cyclophilin-D at a Different Site from Cyclosporin A* , 2002, The Journal of Biological Chemistry.

[120]  John J Lemasters,et al.  Inhibition of the mitochondrial permeability transition by the nonimmunosuppressive cyclosporin derivative NIM811. , 2002, Molecular pharmacology.

[121]  R. Deshaies,et al.  Protacs: Chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[122]  K. Csiszȧr,et al.  Intrathecal cyclosporin prolongs survival of late-stage ALS mice , 2001, Brain Research.

[123]  Simon C Watkins,et al.  Quantitative Biochemical and Ultrastructural Comparison of Mitochondrial Permeability Transition in Isolated Brain and Liver Mitochondria: Evidence for Reduced Sensitivity of Brain Mitochondria , 2000, Experimental Neurology.

[124]  Thomas D. Y. Chung,et al.  A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays , 1999, Journal of biomolecular screening.

[125]  A. Halestrap,et al.  Reversal of permeability transition during recovery of hearts from ischemia and its enhancement by pyruvate. , 1999, American journal of physiology. Heart and circulatory physiology.

[126]  P. Bernardi,et al.  Mitochondrial transport of cations: channels, exchangers, and permeability transition. , 1999, Physiological reviews.

[127]  A. Halestrap,et al.  Direct demonstration of a specific interaction between cyclophilin-D and the adenine nucleotide translocase confirms their role in the mitochondrial permeability transition. , 1998, The Biochemical journal.

[128]  M. Crompton,et al.  Cyclophilin-D binds strongly to complexes of the voltage-dependent anion channel and the adenine nucleotide translocase to form the permeability transition pore. , 1998, European journal of biochemistry.

[129]  H. Husi,et al.  Structures of cyclophilin-ligand complexes. , 1997, Progress in biophysics and molecular biology.

[130]  A. Halestrap,et al.  Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. , 1995, The Biochemical journal.

[131]  A. Halestrap,et al.  Protection by Cyclosporin A of ischemia/reperfusion-induced damage in isolated rat hearts. , 1993, Journal of molecular and cellular cardiology.

[132]  M. Duchen,et al.  On the involvement of a cyclosporin A sensitive mitochondrial pore in myocardial reperfusion injury. , 1993, Cardiovascular research.

[133]  R. Starling,et al.  Cyclosporin inhibits mitochondrial calcium efflux in isolated adult rat ventricular cardiomyocytes. , 1992, The American journal of physiology.

[134]  A. Halestrap,et al.  Purification and N-terminal sequencing of peptidyl-prolyl cis-trans-isomerase from rat liver mitochondrial matrix reveals the existence of a distinct mitochondrial cyclophilin. , 1992, The Biochemical journal.

[135]  M. Zoratti,et al.  Modulation of the mitochondrial permeability transition pore. Effect of protons and divalent cations. , 1992, The Journal of biological chemistry.

[136]  M. Zoratti,et al.  The mitochondrial megachannel is the permeability transition pore , 1992, Journal of bioenergetics and biomembranes.

[137]  M. Crompton,et al.  Inhibition of anoxia-induced injury in heart myocytes by cyclosporin A. , 1991, Journal of molecular and cellular cardiology.

[138]  M. Crompton,et al.  Inhibition by cyclosporin A of a Ca2+-dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress. , 1988, The Biochemical journal.

[139]  R. Haworth,et al.  The Ca2+-induced membrane transition in mitochondria. II. Nature of the Ca2+ trigger site. , 1979, Archives of biochemistry and biophysics.