Quantum dot — Microlasers with external feedback — A chaotic system close to the quantum limit

We demonstrate that chaos can be observed in quantum-dot microlaser. By coupling photons back into the microcavity, a strong change in the photon statistics of the emitted light is observed, being indicative of random-intensity fluctuations.

[1]  I Kanter,et al.  Ultrahigh-speed random number generation based on a chaotic semiconductor laser. , 2009, Physical review letters.

[2]  M. Bayer,et al.  Direct observation of correlations between individual photon emission events of a microcavity laser , 2009, Nature.

[3]  Atsushi Uchida,et al.  Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers. , 2010, Optics express.

[4]  Wolfgang Kinzel,et al.  Synchronization of random bit generators based on coupled chaotic lasers and application to cryptography. , 2010, Optics express.

[5]  Christian Schneider,et al.  Low threshold electrically pumped quantum dot-micropillar lasers , 2008 .

[6]  Christian Schneider,et al.  AlAs∕GaAs micropillar cavities with quality factors exceeding 150.000 , 2007 .

[7]  K. Vahala Optical microcavities , 2003, Nature.

[8]  Adonis Bogris,et al.  Chaos-based communications at high bit rates using commercial fibre-optic links , 2006, SPIE/OSA/IEEE Asia Communications and Photonics.

[9]  Laurent Larger,et al.  Nonlinear dynamics: Optoelectronic chaos , 2010, Nature.

[10]  D. Ritchie,et al.  An entangled-light-emitting diode , 2010, Nature.

[11]  Noam Gross,et al.  TE-TM coupled mode dynamics in a semiconductor laser subject to feedback with variably rotated polarization , 2009 .

[12]  Ulrich Parlitz,et al.  Hyperchaotic dynamics and synchronization of external-cavity semiconductor lasers , 1998 .

[13]  S. Reitzenstein,et al.  Photon statistics of semiconductor microcavity lasers. , 2007, Physical review letters.

[14]  Roy,et al.  Communication with chaotic lasers , 1998, Science.

[15]  Gunnar Björk,et al.  Analysis of semiconductor microcavity lasers using rate equations , 1991 .

[16]  G. Sęk,et al.  Strong coupling in a single quantum dot semiconductor microcavity system , 2006, SPIE OPTO.

[17]  D. Bouwmeester,et al.  Self-tuned quantum dot gain in photonic crystal lasers. , 2005, Physical review letters.

[18]  Jia-Ming Liu,et al.  Synchronized chaotic optical communications at high bit rates , 2002 .

[19]  S. Reitzenstein,et al.  Coherence Properties of High-Beta Semiconductor Micropillar Lasers , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[20]  P. Jessen,et al.  Quantum signatures of chaos in a kicked top , 2009, Nature.

[21]  P. Petroff,et al.  A quantum dot single-photon turnstile device. , 2000, Science.

[22]  Wolfgang Kinzel,et al.  Spiking optical patterns and synchronization. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Wolfgang Kinzel,et al.  Public channel cryptography: chaos synchronization and Hilbert's tenth problem. , 2008, Physical review letters.

[24]  R. Lang,et al.  External optical feedback effects on semiconductor injection laser properties , 1980 .

[25]  A. Uchida,et al.  Fast physical random bit generation with chaotic semiconductor lasers , 2008 .

[26]  M. Kamp,et al.  Single quantum dot controlled lasing effects in high-Q micropillar cavities. , 2008, Optics express.

[27]  Frank Jahnke,et al.  Output characteristics of pulsed and continuous-wave-excited quantum-dot microcavity lasers. , 2008, Physical review letters.

[28]  John Whitfield,et al.  Complex systems: Order out of chaos , 2005, Nature.

[29]  Ulrike Woggon,et al.  Photon statistics in the cooperative spontaneous emission. , 2009, Optics express.

[30]  Rajarshi Roy,et al.  Chaotic lasers: The world's fastest dice , 2008 .

[31]  Y. Ota,et al.  Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system , 2009, 0905.3063.

[32]  G. Solomon,et al.  Influence of a single quantum dot state on the characteristics of a microdisk laser. , 2007, Physical review letters.

[33]  I. Kanter,et al.  An optical ultrafast random bit generator , 2010 .

[34]  L. Grenouillet,et al.  Electrically driven high-Q quantum dot-micropillar cavities , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[35]  Wolfgang Kinzel,et al.  Observing chaos for quantum-dot microlasers with external feedback. , 2011, Nature communications.

[36]  Karlsson,et al.  Definition of a laser threshold. , 1994, Physical review. A, Atomic, molecular, and optical physics.