Ordered mesoporous materials in the context of drug delivery systems and bone tissue engineering.

Chemistry, materials science and medicine are research areas that converge in the field of drug delivery systems and tissue engineering. This paper tries to introduce an example of such an interaction, aimed at solving health issues within the world of biomaterials. Ordered mesoporous materials can be loaded with different organic molecules that would be released afterwards, in a controlled fashion, inside a living body. These materials can also react with the body fluids giving rise to carbonated nanoapatite particles as the products of such a chemical interaction; these particles, equivalent to biological apatites, enable the regeneration of bone tissue.

[1]  J. Roth,et al.  A synthetic chaperone corrects the trafficking defect and disease phenotype in a protein misfolding disorder , 2005, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[2]  M. Vallet‐Regí,et al.  Biocompatibility and in vivo gentamicin release from bioactive sol-gel glass implants. , 2002, Journal of biomedical materials research.

[3]  M. Vallet‐Regí,et al.  A New Property of MCM-41: Drug Delivery System , 2001 .

[4]  M. Vallet‐Regí,et al.  Encapsulation of Ibuprofen in Mesoporous Silica: Solid State NMR Characterization , 2003 .

[5]  Thomas,et al.  Design, Synthesis, and In Situ Characterization of New Solid Catalysts. , 1999, Angewandte Chemie.

[6]  M. Vallet‐Regí,et al.  Phosphorous-doped MCM-41 as bioactive material , 2005 .

[7]  M. Vallet‐Regí,et al.  Release evaluation of drugs from ordered three-dimensional silica structures. , 2005, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[8]  Jian Liu,et al.  Structural relation properties of hydrothermally stable functionalized mesoporous organosilicas and catalysis. , 2005, The journal of physical chemistry. B.

[9]  J. Rosenholm,et al.  Drug release from biodegradable silica fibers , 2002 .

[10]  María Vallet-Regí,et al.  Functionalization of mesoporous materials with long alkyl chains as a strategy for controlling drug delivery pattern , 2006 .

[11]  M. Vallet‐Regí,et al.  Solid State NMR Characterisation of Encapsulated Molecules in Mesoporous Silica , 2004 .

[12]  Fredrickson,et al.  Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores , 1998, Science.

[13]  Victor S-Y Lin,et al.  Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles. , 2005, Angewandte Chemie.

[14]  J. Salonen,et al.  Use of thermoanalytical methods in quantification of drug load in mesoporous silicon microparticles , 2005 .

[15]  J. Devoisselle,et al.  Preparation and characterization of siliceous material using liposomes as template. , 2003, Chemical communications.

[16]  F. Palumbo,et al.  Drug Delivery Devices Based on Mesoporous Silicate , 2004, Drug delivery.

[17]  M. Vallet‐Regí,et al.  Mesoporous SBA-15 HPLC evaluation for controlled gentamicin drug delivery. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[18]  Yuhan Sun,et al.  Famotidine drug adsorption on carboxylic acid functionalized ordered SBA-15 mesoporous silica , 2005 .

[19]  M. Vallet‐Regí,et al.  MCM-41 Organic Modification as Drug Delivery Rate Regulator , 2003 .

[20]  Chung-Yuan Mou,et al.  Well-Ordered Mesoporous Silica Nanoparticles as Cell Markers , 2005 .

[21]  M. Vallet‐Regí,et al.  Drug Release and In Vitro Assays of Bioactive Polymer/Glass Mixtures , 2003 .

[22]  Jenny Andersson,et al.  Influences of Material Characteristics on Ibuprofen Drug Loading and Release Profiles from Ordered Micro- and Mesoporous Silica Matrices , 2004 .

[23]  J. B. Higgins,et al.  A new family of mesoporous molecular sieves prepared with liquid crystal templates , 1992 .

[24]  M. Stébé,et al.  Influence of Alkyl Peptidoamines on the Structure of Functionalized Mesoporous Silica , 2004 .

[25]  M. Stébé,et al.  Functionalization of mesoporous silica by condensation of tetramethoxysilane and alkyl peptidoamine monomers in the presence of a non-ionic fluorinated surfactant , 2005 .

[26]  R. Langer,et al.  Drug delivery and targeting. , 1998, Nature.

[27]  K. Kataoka,et al.  Block copolymer micelles for drug delivery: design, characterization and biological significance. , 2001, Advanced drug delivery reviews.

[28]  T. Taguchi,et al.  Photo-Switched Storage and Release of Guest Molecules in the Pore Void of Coumarin-Modified MCM-41 , 2003 .

[29]  J. Devoisselle,et al.  Synthesis and characterisation of ibuprofen-anchored MCM-41 silica and silica gel , 2003 .

[30]  J. Xue,et al.  PLGA/mesoporous silica hybrid structure for controlled drug release. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[31]  A. G. Oertli,et al.  Alkaline Lyotropic Silicate−Surfactant Liquid Crystals , 1997 .

[32]  Anna Carlsson,et al.  Structural study of mesoporous MCM-48 and carbon networks synthesized in the spaces of MCM-48 by electron crystallography , 2002 .

[33]  M. Vallet‐Regí,et al.  In vitro release of gentamicin from OHAp/PEMA/PMMA samples. , 2002, Journal of controlled release : official journal of the Controlled Release Society.

[34]  J. M. Thomas Uniforme heterogene Katalysatoren – die Rolle der Festkörperchemie bei der Katalysatorentwicklung , 1988 .

[35]  M. Vallet‐Regí,et al.  Tissue regeneration: A new property of mesoporous materials , 2005 .

[36]  Sang Bok Lee,et al.  Magnetic nanotubes for magnetic-field-assisted bioseparation, biointeraction, and drug delivery. , 2005, Journal of the American Chemical Society.

[37]  Yasuhiro Sakamoto,et al.  Direct imaging of the pores and cages of three-dimensional mesoporous materials , 2000, Nature.

[38]  J. Choy,et al.  Inorganic delivery vector for intravenous injection. , 2004, Biomaterials.

[39]  G. Lu,et al.  A NOVEL METHOD FOR TAILORING THE PORE-OPENING SIZE OF MCM-41 MATERIALS , 1999 .

[40]  T. Coradin,et al.  Immobilisation of single molecule magnets in mesoporous silica hosts , 2003 .

[41]  S A Goldstein,et al.  Skeletal repair by in situ formation of the mineral phase of bone. , 1995, Science.

[42]  B. K. Mishra,et al.  Chemical modification of silica surface by immobilization of functional groups for extractive concentration of metal ions. , 2004, Talanta.

[43]  M. Vallet‐Regí,et al.  Revisiting silica based ordered mesoporous materials: medical applications , 2006 .

[44]  Yufang Zhu,et al.  Hollow mesoporous spheres with cubic pore network as a potential carrier for drug storage and its in vitro release kinetics , 2005 .

[45]  P. Dutta,et al.  Controlled release of paraquat from surface-modified zeolite Y , 2006 .

[46]  Masahiro Fujiwara,et al.  Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica , 2003, Nature.

[47]  V. Constantino,et al.  Immobilization of ibuprofen and copper-ibuprofen drugs on layered double hydroxides. , 2005, Journal of pharmaceutical sciences.

[48]  Avelino Corma,et al.  From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. , 1997, Chemical reviews.

[49]  J. Devoisselle,et al.  Inclusion of ibuprofen in mesoporous templated silica: drug loading and release property. , 2004, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[50]  M. Vallet‐Regí,et al.  Mesoporous MCM-41 as Drug Host System , 2003 .

[51]  G. Giammona,et al.  Mesoporous silicate as matrix for drug delivery systems of non-steroidal antinflammatory drugs , 2002 .

[52]  Brian J. Melde,et al.  Hybrid Inorganic–Organic Mesoporous Silicates—Nanoscopic Reactors Coming of Age , 2000 .

[53]  M. Vallet‐Regí,et al.  Bioactive Carbonate−Hydroxyapatite Coatings Deposited onto Ti6Al4V Substrate , 2004 .

[54]  Victor S-Y Lin,et al.  A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. , 2003, Journal of the American Chemical Society.

[55]  M. Vallet‐Regí,et al.  Hexagonal ordered mesoporous material as a matrix for the controlled release of amoxicillin , 2004 .

[56]  M. Honkanen,et al.  Synthesis of sol–gel silica materials providing a slow release of biphosphonate , 2005 .

[57]  J. M. Thomas Design, Synthese und In‐situ‐Charakterisierung neuer Feststoffkatalysatoren , 1999 .

[58]  K. Ariga,et al.  Recent advances in functionalization of mesoporous silica. , 2005, Journal of nanoscience and nanotechnology.

[59]  John Meurig Thomas Uniform Heterogeneous Catalysts: The Role of Solid‐State Chemistry in their Development and Design , 1988 .

[60]  Hybrid Mesoporous Materials with Functionalized Monolayers , 1998 .

[61]  V. S. Lin,et al.  Real-Time Imaging of Tunable Adenosine 5-Triphosphate Release from an MCM-41-Type Mesoporous Silica Nanosphere-Based Delivery System , 2005, Applied spectroscopy.

[62]  J. S. Beck,et al.  Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism , 1992, Nature.

[63]  Yufang Zhu,et al.  Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure. , 2005, Angewandte Chemie.

[64]  M. Vallet‐Regí,et al.  Bioactivity in ordered mesoporous materials , 2004 .

[65]  C. Serre,et al.  A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.

[66]  T. Okano,et al.  Pulsatile drug delivery systems using hydrogels , 1993 .

[67]  Weizhen Zeng,et al.  Organic modified mesoporous MCM-41 through solvothermal process as drug delivery system , 2005 .

[68]  F. Xiao,et al.  pH-responsive carrier system based on carboxylic acid modified mesoporous silica and polyelectrolyte for drug delivery , 2005 .

[69]  María Vallet-Regí,et al.  Ceramics for medical applications , 2001 .

[70]  Alastair J. Florence,et al.  Refinement of Ibuprofen at 100K by Single-Crystal Pulsed Neutron Diffraction , 1997 .

[71]  Larry L. Hench,et al.  Bonding mechanisms at the interface of ceramic prosthetic materials , 1971 .

[72]  M. Vallet‐Regí,et al.  Influence of pore size of MCM-41 matrices on drug delivery rate , 2004 .

[73]  John Meurig Thomas The chemistry of crystalline sponges , 1994, Nature.

[74]  J. Jansen,et al.  A new method to produce macropores in calcium phosphate cements. , 2002, Biomaterials.