Evaluating Four Remote Sensing Methods for Estimating Surface Air Temperature on a Regional Scale

AbstractSurface air temperature is a basic meteorological variable to monitor the environment and assess climate change. Four remote sensing methods—the temperature–vegetation index (TVX), the univariate linear regression method, the multivariate linear regression method, and the advection-energy balance for surface air temperature (ADEBAT)—have been developed to acquire surface air temperature on a regional scale. To evaluate their utilities, they were applied to estimate the surface air temperature in northwestern China and were compared with each other through regressive analyses, t tests, estimation errors, and analyses on estimations of different underlying surfaces. Results can be summarized into three aspects: 1) The regressive analyses and t tests indicate that the multivariate linear regression method and the ADEBAT provide better accuracy than the other two methods. 2) Frequency histograms on estimation errors show that the multivariate linear regression method produces the minimum error range, ...

[1]  S. Idso,et al.  Canopy temperature as a crop water stress indicator , 1981 .

[2]  Wilfried Brutsaert,et al.  Evaporation into the atmosphere : theory, history, and applications , 1982 .

[3]  L. H. Allen,et al.  Comparison of winter-nocturnal geostationary satellite infrared-surface temperature with shelter-height temperature in Florida , 1983 .

[4]  J. D. Tarpley,et al.  Estimation of Shelter Temperatures from Operational Satellite Sounder Data , 1983 .

[5]  S. Running,et al.  Estimation of regional surface resistance to evapotranspiration from NDVI and thermal-IR AVHRR data , 1989 .

[6]  William P. Kustas,et al.  Estimates of Evapotranspiration with a One- and Two-Layer Model of Heat Transfer over Partial Canopy Cover , 1990 .

[7]  S. Running,et al.  Developing Satellite-derived Estimates of Surface Moisture Status , 1993 .

[8]  S. Kawashima,et al.  Relation between vegetation, surface temperature, and surface composition in the Tokyo region during winter , 1994 .

[9]  Richard H. Waring,et al.  Ecological Remote Sensing at OTTER: Satellite Macroscale Observations , 1994 .

[10]  J. Norman,et al.  Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature , 1995 .

[11]  S. Goward,et al.  Estimation of air temperature from remotely sensed surface observations , 1997 .

[12]  Samuel N. Goward,et al.  Biospheric environmental monitoring at BOREAS with AVHRR observations , 1997 .

[13]  S. Goetz Multi-sensor analysis of NDVI, surface temperature and biophysical variables at a mixed grassland site , 1997 .

[14]  Bruno Monteny,et al.  Sensible heat flux and radiometric surface temperature over sparse Sahelian vegetation. I. An experimental analysis of the kB−1 parameter , 1997 .

[15]  Anne Verhoef,et al.  Some Practical Notes on the Parameter kB−1 for Sparse Vegetation , 1997 .

[16]  Scott J. Goetz,et al.  Inference of surface and air temperature, atmospheric precipitable water and vapor pressure deficit using Advanced Very High-Resolution Radiometer satellite observations: comparison with field observations , 1998 .

[17]  A. Holtslag,et al.  A remote sensing surface energy balance algorithm for land (SEBAL)-1. Formulation , 1998 .

[18]  Stephen J. Connor,et al.  Estimating surface air temperatures, from Meteosat land surface temperatures, using an empirical solar zenith angle model , 1999 .

[19]  Jean-Paul Lhomme,et al.  Sensible Heat Flux-Radiometric Surface Temperature Relationship Over Sparse Vegetation: Parameterizing B-1 , 2000, Boundary-Layer Meteorology.

[20]  Tetsuhisa Miwa,et al.  Relations between Surface Temperature and Air Temperature on a Local Scale during Winter Nights , 2000 .

[21]  Rachel Spronken-Smith,et al.  Advection and the surface energy balance across an irrigated urban park , 2000 .

[22]  Venkat Lakshmi,et al.  Land surface air temperature mapping using TOVS and AVHRR , 2001 .

[23]  S. Hay,et al.  The potential of Pathfinder AVHRR data for providing surrogate climatic variables across Africa and Europe for epidemiological applications. , 2002, Remote sensing of environment.

[24]  Eva Boegh,et al.  Evaluating evapotranspiration rates and surface conditions using Landsat TM to estimate atmospheric resistance and surface resistance , 2002 .

[25]  Z. Su The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes , 2002 .

[26]  Timothy R. Oke,et al.  Evaluation of the Town Energy Balance (TEB) Scheme with Direct Measurements from Dry Districts in Two Cities , 2002 .

[27]  R. Pape,et al.  Modelling spatio-temporal near-surface temperature variation in high mountain landscapes , 2004 .

[28]  François Anctil,et al.  Neural network estimation of air temperatures from AVHRR data , 2004 .

[29]  Yong Xue,et al.  Air temperature retrieval from remote sensing data based on thermodynamics , 2005 .

[30]  Matthew F. McCabe,et al.  Surface energy fluxes with the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) at the Iowa 2002 SMACEX site (USA) , 2005 .

[31]  Nektarios Chrysoulakis,et al.  Using midday surface temperature to estimate Cooling Degree-Days from NOAA-AVHRR thermal infrared data: An application for Athens, Greece , 2006 .

[32]  Thomas A. Huld,et al.  Estimating average daytime and daily temperature profiles within Europe , 2006, Environ. Model. Softw..

[33]  Rasmus Fensholt,et al.  Estimation of diurnal air temperature using MSG SEVIRI data in West Africa , 2007 .

[34]  J. Cristóbal,et al.  Modeling air temperature through a combination of remote sensing and GIS data , 2008 .

[35]  Marion Schroedter-Homscheidt,et al.  Parameterization of air temperature in high temporal and spatial resolution from a combination of the SEVIRI and MODIS instruments , 2009 .

[36]  Yanbo He,et al.  Estimation of air temperature from MODIS data in east China , 2009 .

[37]  Rudolf Richter,et al.  Estimation of instantaneous air temperature above vegetation and soil surfaces from Landsat 7 ETM+ data in northern Germany , 2011 .

[38]  Emilio Chuvieco,et al.  Air temperature estimation with MSG-SEVIRI data: Calibration and validation of the TVX algorithm for the Iberian Peninsula , 2011 .

[39]  Weiguo Jiang,et al.  Near-surface air temperature retrieval from satellite images and influence by wetlands in urban region , 2012, Theoretical and Applied Climatology.

[40]  Jiaping Wu,et al.  valuation of estimating daily maximum and minimum air temperature with ODIS data in east Africa , 2012 .

[41]  A Physically Based Spatial Expansion Algorithm for Surface Air Temperature and Humidity , 2013 .

[42]  Qing Xiao,et al.  Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific Objectives and Experimental Design , 2013 .

[43]  Shaofeng Jia,et al.  Estimation of daily maximum and minimum air temperature using MODIS land surface temperature products , 2013 .

[44]  Jiemin Wang,et al.  Intercomparison of surface energy flux measurement systems used during the HiWATER‐MUSOEXE , 2013 .

[45]  Yongming Du,et al.  Evaluation of the VIIRS and MODIS LST products in an arid area of Northwest China , 2014 .

[46]  Kelly R. Thorp,et al.  Remote sensing of evapotranspiration over cotton using the TSEB and METRIC energy balance models , 2015 .

[47]  Renhua Zhang,et al.  A Remote Sensing Method for Estimating Surface Air Temperature and Surface Vapor Pressure on a Regional Scale , 2015, Remote. Sens..

[48]  Y. Ge,et al.  Upscaling evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces , 2016 .