On the core of traveling salesman games

We define excess rate to study the core of traveling salesman games from a perspective of optimization, propose a new variant of the traveling salesman problem, and build a link between the two problems. An exact formula for the lowest achievable excess rate is found, which explains the existence of core emptiness. We then develop an implementable method to check whether empty core exists in general case. The results apply for both symmetric and asymmetric traveling salesman games.

[1]  David P. Williamson,et al.  Analyzing the Held-Karp TSP Bound: A Monotonicity Property with Application , 1990, Inf. Process. Lett..

[2]  Michel Gendreau,et al.  Traveling Salesman Problems with Profits , 2005, Transp. Sci..

[3]  Arie Tamir,et al.  On the core of a traveling salesman cost allocation game , 1989 .

[4]  Jeroen Kuipers A note on the 5-person traveling salesman game , 1993, ZOR Methods Model. Oper. Res..

[5]  Michel X. Goemans,et al.  Survivable networks, linear programming relaxations and the parsimonious property , 1993, Math. Program..

[6]  Alejandro Toriello,et al.  Technical Note - On Traveling Salesman Games with Asymmetric Costs , 2013, Oper. Res..

[7]  Eugene L. Lawler,et al.  Traveling Salesman Problem , 2016 .

[8]  M. Fischetti,et al.  AN ADDITIVE APPROACH FOR THE OPTIMAL SOLUTION OF THE PRIZE-COLLECTING TRAVELLING SALESMAN PROBLEM. VEHICLE ROUTING: METHODS AND STUDIES. STUDIES IN MANAGEMENT SCIENCE AND SYSTEMS - VOLUME 16 , 1988 .

[9]  Yoshio Okamoto Traveling salesman games with the Monge property , 2004, Discret. Appl. Math..

[10]  R. A. Zemlin,et al.  Integer Programming Formulation of Traveling Salesman Problems , 1960, JACM.

[11]  Amin Saberi,et al.  An O(log n/ log log n)-approximation algorithm for the asymmetric traveling salesman problem , 2010, SODA '10.

[12]  Michel X. Goemans,et al.  Worst-case comparison of valid inequalities for the TSP , 1995, Math. Program..

[13]  Eugene L. Lawler,et al.  Well-solved Special Cases of the Traveling Salesman Problem , 1984 .

[14]  Stef Tijs,et al.  Traveling salesman games , 1992, Math. Program..

[15]  E. Lawler,et al.  Erratum: The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization , 1986 .

[16]  Bruce L. Golden,et al.  VEHICLE ROUTING: METHODS AND STUDIES , 1988 .

[17]  Sándor P. Fekete,et al.  On approximately fair cost allocation in Euclidean TSP games , 1998, Electron. Colloquium Comput. Complex..

[18]  Richard M. Karp,et al.  The Traveling-Salesman Problem and Minimum Spanning Trees , 1970, Oper. Res..

[19]  Guillermo Owen,et al.  On the core of linear production games , 1975, Math. Program..

[20]  Sylvia C. Boyd,et al.  Finding the Exact Integrality Gap for Small Traveling Salesman Problems , 2002, Math. Oper. Res..