Novel aspects of plasma control in ITER

ITER plasma control design solutions and performance requirements are strongly driven by its nuclear mission, aggressive commissioning constraints, and limited number of operational discharges. In addition, high plasma energy content, heat fluxes, neutron fluxes, and very long pulse operation place novel demands on control performance in many areas ranging from plasma boundary and divertor regulation to plasma kinetics and stability control. Both commissioning and experimental operations schedules provide limited time for tuning of control algorithms relative to operating devices. Although many aspects of the control solutions required by ITER have been well-demonstrated in present devices and even designed satisfactorily for ITER application, many elements unique to ITER including various crucial integration issues are presently under development. We describe selected novel aspects of plasma control in ITER, identifying unique parts of the control problem and highlighting some key areas of research remaining. Novel control areas described include control physics understanding (e.g., current profile regulation, tearing mode (TM) suppression), control mathematics (e.g., algorithmic and simulation approaches to high confidence robust performance), and integration solutions (e.g., methods for management of highly subscribed control resources). We identify unique aspects of the ITER TM suppression scheme, which will pulse gyrotrons to drive current within a magnetic island, and turn the drive off following suppression in order to minimize use of auxiliary power and maximize fusion gain. The potential role of active current profile control and approaches to design in ITER are discussed. Issues and approaches to fault handling algorithms are described, along with novel aspects of actuator sharing in ITER.

[1]  Massimiliano Mattei,et al.  Experimental studies of ITER demonstration discharges , 2009 .

[2]  F. Felici,et al.  Non-linear model-based optimization of actuator trajectories for tokamak plasma profile control , 2012 .

[3]  R. J. La Haye,et al.  Neoclassical tearing modes and their controla) , 2005 .

[4]  M. Krstić,et al.  Real-Time Optimization by Extremum-Seeking Control , 2003 .

[5]  P. C. de Vries,et al.  Real-time control of the q-profile in JET for steady state advanced tokamak operation , 2003 .

[6]  Alfredo Portone,et al.  Plasma current and shape control in tokamaks using H/sub /spl infin// and /spl mu/-synthesis , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[7]  Robert W. Conn,et al.  Linear Optimal Control of Tokamak Fusion Devices , 1990 .

[8]  Experts,et al.  Integrated magnetic and kinetic control of advanced tokamak plasmas on DIII-D based on data-driven models , 2013 .

[9]  O. Sauter,et al.  Sawtooth pacing by real-time auxiliary power control in a tokamak plasma. , 2011, Physical review letters.

[10]  D. A. Humphreys,et al.  Experimental simulation of ITER rampdown in DIII-D , 2010 .

[11]  Scott W. Haney,et al.  Active Control of Burn Conditions for the International Thermonuclear Experimental Reactor , 1990 .

[12]  M. Walker,et al.  Design and simulation of extremum-seeking open-loop optimal control of current profile in the DIII-D tokamak , 2008 .

[13]  David A. Humphreys,et al.  Axisymmetric Magnetic Control Design in Tokamaks Using Perturbed Equilibrium Plasma Response Modeling , 1993 .

[14]  Massimiliano Mattei,et al.  Design, implementation and test of the XSC extreme shape controller in JET , 2005 .

[15]  J. B. Lister,et al.  Actuator and diagnostic requirements of the ITER Plasma Control System , 2012 .

[16]  E. Joffrin,et al.  A control-oriented model of the current profile in tokamak plasma , 2007 .

[17]  D. Humphreys,et al.  Advanced control of neoclassical tearing modes in DIII-D with real-time steering of the electron cyclotron current drive , 2013 .

[18]  N Hawkes,et al.  Active control of type-I edge-localized modes with n=1 perturbation fields in the JET tokamak. , 2007, Physical review letters.

[19]  Alfredo Portone,et al.  PLASMA CURRENT AND SHAPE CONTROL IN TOKAMAKS , 1997 .

[20]  Alfredo Pironti,et al.  XSC plasma control: Tool development for the session leader , 2005 .

[21]  T. Petrie,et al.  Demonstration of ITER operational scenarios on DIII-D , 2008 .

[22]  Karel J. Keesman,et al.  System Identification: An Introduction , 2011 .

[23]  D. A. Humphreys,et al.  Next-generation plasma control in the DIII-D tokamak , 2003 .

[24]  Miroslav Krstic,et al.  Burn Control in Fusion Reactors via Nonlinear Stabilization Techniques , 2003 .

[25]  Eugenio Schuster,et al.  Nonlinear Physics-model-based Actuator Trajectory Optimization for Advanced Scenario Planning in the DIII-D Tokamak , 2014 .

[26]  R. L. Haye,et al.  Sawtooth control using electron cyclotron current drive in ITER demonstration plasmas in DIII-D , 2012 .

[27]  D. A. Humphreys,et al.  Towards model-based current profile control at DIII-D , 2007 .

[28]  Eugenio Schuster,et al.  Backstepping Control of the Toroidal Plasma Current Profile in the DIII-D Tokamak , 2014, IEEE Transactions on Control Systems Technology.

[29]  J. Lister,et al.  Self-consistent simulation of plasma scenarios for ITER using a combination of 1.5D transport codes and free-boundary equilibrium codes , 2013, 1310.8437.

[30]  E. J. Strait,et al.  DISCHARGE IMPROVEMENT THROUGH CONTROL OF NEOCLASSICAL TEARING MODES BY LOCALIZED ECCD IN DIII-D , 2002 .

[31]  Olivier Sauter,et al.  On the requirements to control neoclassical tearing modes in burning plasmas , 2010 .

[32]  E. Doyle,et al.  Stability boundaries and development of the ITER baseline scenario , 2012 .

[33]  F. Sartori,et al.  The joint european torus : Plasma position and shape control in the world's largest tokamak , 2006 .

[34]  J. S. deGrassie,et al.  Long-pulse stability limits of the ITER baseline scenario , 2015 .

[35]  M. A. Athans,et al.  The role and use of the stochastic linear-quadratic-Gaussian problem in control system design , 1971 .

[36]  T. C. Luce,et al.  Impact of the current profile evolution on tearing stability of ITER demonstration discharges in DIII-D , 2010 .

[37]  Faa Federico Felici,et al.  First results of real-time plasma state reconstruction using a model-based dynamic observer on ASDEX-Upgrade , 2014 .

[38]  Jet Efda Contributors,et al.  JET disruption studies in support of ITER , 2010 .

[39]  Gerhard Raupp,et al.  Real-time exception handling—Use cases and response requirements , 2012 .

[40]  S. Jardin,et al.  Mechanism of vertical displacement events in JT-60U disruptive discharges , 1996 .

[41]  F. Felici,et al.  Real-time physics-model-based simulation of the current density profile in tokamak plasmas , 2011 .

[42]  Manfred Morari,et al.  Model predictive control: Theory and practice - A survey , 1989, Autom..

[43]  L. L. Lao,et al.  A mechanism for tearing onset near ideal stability boundaries , 2003 .

[44]  M. Maraschek,et al.  Control of neoclassical tearing modes , 2012 .

[45]  T. Petrie,et al.  Simulating ITER plasma startup and rampdown scenarios in the DIII-D tokamak , 2009 .

[46]  Dan Simon,et al.  Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches , 2006 .

[47]  James D. Callen,et al.  On the stabilization of neoclassical magnetohydrodynamic tearing modes using localized current drive or heating , 1997 .

[48]  Eugenio Schuster,et al.  Physics-based control-oriented modeling of the safety factor profile dynamics in high performance tokamak plasmas , 2013, 52nd IEEE Conference on Decision and Control.

[49]  D. A. Humphreys,et al.  Plasma current, position and shape feedback control on EAST , 2013 .

[50]  R. J. La Haye,et al.  Prospects for stabilization of neoclassical tearing modes by electron cyclotron current drive in ITER , 2009 .

[51]  Eugenio Schuster,et al.  Control-oriented modelling for neoclassical tearing mode stabilization via minimum-seeking techniques , 2012 .

[52]  Massimiliano Mattei,et al.  A constrained control strategy for the shape control in thermonuclear fusion tokamaks , 2013, Autom..

[53]  Maciejowsk Multivariable Feedback Design , 1989 .

[54]  Makowski,et al.  DIII-D research towards resolving key issues for ITER and steady-state tokamaks , 2013 .

[55]  Gunter,et al.  Complete suppression of neoclassical tearing modes with current drive at the electron-cyclotron-resonance frequency in ASDEX upgrade tokamak , 2000, Physical review letters.

[56]  H. Zohm,et al.  Neoclassical Tearing Modes , 2000 .

[57]  F. Sartori,et al.  The Joint European Torus , 2006, IEEE Control Systems.

[58]  E. J. Strait,et al.  Feedback control of the proximity to marginal RWM stability using active MHD spectroscopy , 2011 .

[59]  A. Hyatt,et al.  Control of plasma stored energy for burn control using DIII-D in-vessel coils , 2014 .

[60]  D. A. Humphreys,et al.  Active control for stabilization of neoclassical tearing modes , 2005 .

[61]  T. K. Mau,et al.  Comprehensive Feedback Control of a Tokamak Fusion Reactor , 1997 .

[62]  Faa Federico Felici,et al.  Integrated real-time control of MHD instabilities using multi-beam ECRH/ECCD systems on TCV , 2012 .

[63]  M. Sugihara,et al.  Disruption scenarios, their mitigation and operation window in ITER , 2007 .

[64]  D. A. Humphreys,et al.  State-of-the-art neoclassical tearing mode control in DIII-D using real-time steerable electron cyclotron current drive launchers , 2014 .

[65]  T. Petrie,et al.  Scaling radiative divertor solutions to high power in DIII-D , 2012 .

[66]  D. A. Humphreys,et al.  Heat flux management via advanced magnetic divertor configurations and divertor detachment , 2015 .

[67]  D. A. Humphreys,et al.  Simulating the ITER Plasma Startup Scenario in the DIII-D Tokamak , 2008 .

[68]  P T Lang,et al.  First observation of edge localized modes mitigation with resonant and nonresonant magnetic perturbations in ASDEX Upgrade. , 2011, Physical review letters.

[69]  C. Holcomb,et al.  Measurements, modelling and electron cyclotron heating modification of Alfvén eigenmode activity in DIII-D , 2009 .

[70]  K. Ioki,et al.  Disruption Impacts and their Mitigation Target Values for ITER Operation and Machine Protection , 2013 .

[71]  D. A. Humphreys,et al.  Novel rapid shutdown strategies for runaway electron suppression in DIII-D , 2011 .

[72]  J. Schweinzer,et al.  Optimized tokamak power exhaust with double radiative feedback in ASDEX Upgrade , 2012 .

[73]  J. A. Snipes,et al.  Conceptual Design of the ITER Plasma Control System , 2013 .

[74]  Jet Efda Contributors,et al.  A two-time-scale dynamic-model approach for magnetic and kinetic profile control in advanced tokamak scenarios on JET , 2008 .

[75]  Kozo Yamazaki,et al.  Achievement of high fusion triple product, steady-state sustainment and real-time NTM stabilization in high-βp ELMy H-mode discharges in JT-60U , 2003 .

[76]  M E Fenstermacher,et al.  Suppression of large edge-localized modes in high-confinement DIII-D plasmas with a stochastic magnetic boundary. , 2004, Physical review letters.

[77]  J. Lister,et al.  Experimental vertical stability studies for ITER performance and design guidance , 2009 .

[78]  D. A. Humphreys,et al.  Requirements for alignment of electron cyclotron current drive for neoclassical tearing mode stabilization in ITER , 2008 .

[79]  S. H. Kim,et al.  A potentially robust plasma profile control approach for ITER using real-time estimation of linearized profile response models , 2012 .