Molecular analysis of beta-lactamase structure and function.

The extensive and sometimes irresponsible use of beta-lactam antibiotics in clinical and agricultural settings has contributed to the emergence and widespread dissemination of antibiotic-resistant bacteria. Bacteria have evolved three strategies to escape the activity of beta-lactam antibiotics: 1) alteration of the target site (e.g. penicillin-binding protein (PBPs), 2) reduction of drug permeation across the bacterial membrane (e.g. efflux pumps) and 3) production of beta-lactamase enzymes. The beta-lactamase enzymes inactivate beta-lactam antibiotics by hydrolyzing the peptide bond of the characteristic four-membered beta-lactam ring rendering the antibiotic ineffective. The inactivation of the antibiotic provides resistance to the bacterium. Currently, there are over 300 beta-lactamase enzymes described for which numerous kinetic, structural, computational and mutagenesis studies have been performed. In this review, we discuss the recent work performed on the four different classes (A, B, C, and D) of beta-lactamases. These investigative advances further expand our knowledge about these complex enzymes, and hopefully, will provide us with additional tools to develop new inhibitors and antibiotics based on structural and rational designs.

[1]  G. Cornaglia,et al.  Cloning and Characterization of blaVIM, a New Integron-Borne Metallo-β-Lactamase Gene from a Pseudomonas aeruginosa Clinical Isolate , 1999, Antimicrobial Agents and Chemotherapy.

[2]  P. Fitzgerald,et al.  Unanticipated inhibition of the metallo-beta-lactamase from Bacteroides fragilis by 4-morpholineethanesulfonic acid (MES): a crystallographic study at 1.85-A resolution. , 1998, Biochemistry.

[3]  D. Mustafi,et al.  ENDOR structural characterization of a catalytically competent acylenzyme reaction intermediate of wild-type TEM-1 beta-lactamase confirms glutamate-166 as the base catalyst. , 2001, Biochemistry.

[4]  F. Winkler,et al.  Refined crystal structure of β-lactamase from Citrobacter freundiiindicates a mechanism for β-lactam hydrolysis , 1990, Nature.

[5]  J. Frère,et al.  Zn(II) dependence of the Aeromonas hydrophila AE036 metallo-beta-lactamase activity and stability. , 1997, Biochemistry.

[6]  S. Cabantous,et al.  X-ray structure of the Asn276Asp variant of the Escherichia coli TEM-1 beta-lactamase: direct observation of electrostatic modulation in resistance to inactivation by clavulanic acid. , 1999, Biochemistry.

[7]  T. Palzkill,et al.  A secondary drug resistance mutation of TEM-1 beta-lactamase that suppresses misfolding and aggregation. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[8]  T. Sawai,et al.  Effect of an amino acid insertion into the omega loop region of a class C beta-lactamase on its substrate specificity. , 1998, Biochemistry.

[9]  J. Frère,et al.  Evolution of an enzyme activity: crystallographic structure at 2-A resolution of cephalosporinase from the ampC gene of Enterobacter cloacae P99 and comparison with a class A penicillinase. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[10]  L. Alksne,et al.  Expression of the AsbA1, OXA-12, and AsbM1 beta-lactamases in Aeromonas jandaei AER 14 is coordinated by a two-component regulon , 1997, Journal of bacteriology.

[11]  I. Casin,et al.  Novel OXA-10-Derived Extended-Spectrum β-Lactamases Selected In Vivo or In Vitro , 1998, Antimicrobial Agents and Chemotherapy.

[12]  J. Masson,et al.  Replacement of lysine 234 affects transition state stabilization in the active site of beta-lactamase TEM1. , 1991, The Journal of biological chemistry.

[13]  M. Galleni,et al.  Signalling proteins in enterobacterial AmpC β‐lactamase regulation , 1989 .

[14]  J. Ghuysen,et al.  Serine beta-lactamases and penicillin-binding proteins. , 1991, Annual review of microbiology.

[15]  C. Betzel,et al.  Molecular structure of the acyl-enzyme intermediate in β-lactam hydrolysis at 1.7 Å resolution , 1992, Nature.

[16]  M. Larocco,et al.  Characterization of TEM-1 beta-lactamase mutants from positions 238 to 241 with increased catalytic efficiency for ceftazidime. , 1994, The Journal of biological chemistry.

[17]  B. Shoichet,et al.  Inhibition of AmpC beta-lactamase through a destabilizing interaction in the active site. , 2001, Biochemistry.

[18]  R. Labia,et al.  Clinical inhibitor-resistant mutants of the beta-lactamase TEM-1 at amino-acid position 69. Kinetic analysis and molecular modelling. , 1998, Biochimica et biophysica acta.

[19]  T. Palzkill,et al.  Identification of residues critical for metallo‐β‐lactamase function by codon randomization and selection , 2001 .

[20]  D. Payne,et al.  Inhibition of metallo-beta-lactamases by a series of mercaptoacetic acid thiol ester derivatives , 1997, Antimicrobial agents and chemotherapy.

[21]  F. Winkler,et al.  Refined crystal structure of beta-lactamase from Citrobacter freundii indicates a mechanism for beta-lactam hydrolysis. , 2001, Nature.

[22]  S. Mobashery,et al.  Class C β-Lactamases Operate at the Diffusion Limit for Turnover of Their Preferred Cephalosporin Substrates , 1999, Antimicrobial Agents and Chemotherapy.

[23]  G. Feller,et al.  The beta-lactamase secreted by the antarctic psychrophile Psychrobacter immobilis A8 , 1995, Applied and environmental microbiology.

[24]  O. Herzberg,et al.  Structure and kinetics of the beta-lactamase mutants S70A and K73H from Staphylococcus aureus PC1. , 1996, Biochemistry.

[25]  L. Kotra,et al.  Insights into class D beta-lactamases are revealed by the crystal structure of the OXA10 enzyme from Pseudomonas aeruginosa. , 2000, Structure.

[26]  J. Frère,et al.  Catalytic properties of class A beta-lactamases: efficiency and diversity. , 1998, The Biochemical journal.

[27]  P Huovinen,et al.  Sequence of PSE-2 beta-lactamase , 1988, Antimicrobial Agents and Chemotherapy.

[28]  M. Page,et al.  Crystal structure of the class D β-lactamase OXA-10 , 2000, Nature Structural Biology.

[29]  K. Bush,et al.  Imipenem resistance in Klebsiella pneumoniae is associated with the combination of ACT-1, a plasmid-mediated AmpC beta-lactamase, and the foss of an outer membrane protein , 1997, Antimicrobial agents and chemotherapy.

[30]  E. Abraham,et al.  An Enzyme from Bacteria able to Destroy Penicillin , 1940, Nature.

[31]  A. Fink,et al.  Lysine-73 is involved in the acylation and deacylation of beta-lactamase. , 2000, Biochemistry.

[32]  J. Delettré,et al.  Crystal structures of the class D beta-lactamase OXA-13 in the native form and in complex with meropenem. , 2001, Journal of molecular biology.

[33]  Alain Dubus,et al.  The enigmatic catalytic mechanism of active-site serine β-lactamases , 1995 .

[34]  Gianfranco Amicosante,et al.  Structure of In31, ablaIMP-Containing Pseudomonas aeruginosa Integron Phyletically Related to In5, Which Carries an Unusual Array of Gene Cassettes , 1999, Antimicrobial Agents and Chemotherapy.

[35]  Stephen J. Benkovic,et al.  Metallo-β-lactamase: structure and mechanism , 1999 .

[36]  Y. Arakawa,et al.  Characterization of a plasmid-borne and constitutively expressed blaMOX-1 gene encoding AmpC-type beta-lactamase. , 1994, Gene.

[37]  R. Pratt,et al.  Steady-state kinetics of the binding of beta-lactams and penicilloates to the second binding site of the Enterobacter cloacae P99 beta-lactamase. , 1995, Biochemistry.

[38]  S. G. Waley,et al.  Site-directed mutagenesis of beta-lactamase I. Single and double mutants of Glu-166 and Lys-73. , 1990, The Biochemical journal.

[39]  R. Bonomo,et al.  Mutagenesis of amino acid residues in the SHV-1 beta-lactamase: the premier role of Gly238Ser in penicillin and cephalosporin resistance. , 2001, Biochimica et biophysica acta.

[40]  Jesús Blázquez,et al.  The complexed structure and antimicrobial activity of a non‐β‐lactam inhibitor of AmpC β‐lactamase , 2008, Protein science : a publication of the Protein Society.

[41]  G. Barnaud,et al.  A Novel Integron in Salmonella enterica Serovar Enteritidis, Carrying the blaDHA-1 Gene and Its Regulator Gene ampR, Originated fromMorganella morganii , 2000, Antimicrobial Agents and Chemotherapy.

[42]  P E Wright,et al.  Dynamics of the metallo-beta-lactamase from Bacteroides fragilis in the presence and absence of a tight-binding inhibitor. , 2000, Biochemistry.

[43]  S. Normark,et al.  Bacterial cell wall recycling provides cytosolic muropeptides as effectors for beta‐lactamase induction. , 1994, The EMBO journal.

[44]  Moreno Galleni,et al.  Standard Numbering Scheme for Class B β-Lactamases , 2001, Antimicrobial Agents and Chemotherapy.

[45]  R. Bonomo,et al.  Structure of the SHV-1 beta-lactamase. , 1999, Biochemistry.

[46]  L. Ellerby,et al.  The role of lysine-234 in beta-lactamase catalysis probed by site-directed mutagenesis. , 1990, Biochemistry.

[47]  P. Nordmann,et al.  OXA-28, an Extended-Spectrum Variant of OXA-10 β-Lactamase from Pseudomonas aeruginosa and Its Plasmid- and Integron-Located Gene , 2001, Antimicrobial Agents and Chemotherapy.

[48]  T. Grundström,et al.  ampC cephalosporinase of Escherichia coli K-12 has a different evolutionary origin from that of beta-lactamases of the penicillinase type. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[49]  J. Petrosino,et al.  β-Lactamases: protein evolution in real time , 1998 .

[50]  G. Cornaglia,et al.  Relative importances of outer membrane permeability and group 1 beta-lactamase as determinants of meropenem and imipenem activities against Enterobacter cloacae , 1995, Antimicrobial agents and chemotherapy.

[51]  J. W. Dale,et al.  Sequence of the OXA2 β‐lactamase: comparison with other penicillin‐reactive enzymes , 1985, FEBS letters.

[52]  T. Sawai,et al.  Structure of the extended-spectrum class C beta-lactamase of Enterobacter cloacae GC1, a natural mutant with a tandem tripeptide insertion. , 1999, Biochemistry.

[53]  D. Botstein,et al.  Identification of amino acid substitutions that alter the substrate specificity of TEM-1 beta-lactamase , 1992, Journal of bacteriology.

[54]  B. Sutton,et al.  Crystal structure of the zinc-dependent beta-lactamase from Bacillus cereus at 1.9 A resolution: binuclear active site with features of a mononuclear enzyme. , 1998, Biochemistry.

[55]  S. Mobashery,et al.  Elucidation of the role of arginine-244 in the turnover processes of class A beta-lactamases. , 1992, Biochemistry.

[56]  A. Riggs,et al.  Oligonucleotide-directed mutagenesis as a general and powerful method for studies of protein function. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[57]  I. Massova,et al.  Kinship and Diversification of Bacterial Penicillin-Binding Proteins and β-Lactamases , 1998, Antimicrobial Agents and Chemotherapy.

[58]  J. Richards,et al.  Active-site mutants of beta-lactamase: use of an inactive double mutant to study requirements for catalysis. , 1986, Biochemistry.

[59]  J. Knox,et al.  Inhibition of class C beta-lactamases: structure of a reaction intermediate with a cephem sulfone. , 2001, Biochemistry.

[60]  Peter S. Shenkin,et al.  Amino Acid Sequence Determinants of β-Lactamase Structure and Activity , 1996 .

[61]  G. Jacoby,et al.  A functional classification scheme for beta-lactamases and its correlation with molecular structure , 1995, Antimicrobial agents and chemotherapy.

[62]  J. Frère,et al.  Beta‐lactamases and bacterial resistance to antibiotics , 1995, Molecular microbiology.

[63]  G S Weston,et al.  Three-dimensional structure of AmpC beta-lactamase from Escherichia coli bound to a transition-state analogue: possible implications for the oxyanion hypothesis and for inhibitor design. , 1998, Biochemistry.

[64]  J. Frère,et al.  Crystal structure of the IMP-1 metallo beta-lactamase from Pseudomonas aeruginosa and its complex with a mercaptocarboxylate inhibitor: binding determinants of a potent, broad-spectrum inhibitor. , 2000, Biochemistry.

[65]  R. Cluzel,et al.  Novel plasmid-mediated beta-lactamase in clinical isolates of Klebsiella pneumoniae more resistant to ceftazidime than to other broad-spectrum cephalosporins , 1988, Antimicrobial Agents and Chemotherapy.

[66]  Youjun Yang,et al.  Class A β-lactamases—enzyme-inhibitor interactions and resistance , 1999 .

[67]  O. Massidda,et al.  High specificity of cphA-encoded metallo-beta-lactamase from Aeromonas hydrophila AE036 for carbapenems and its contribution to beta-lactam resistance , 1993, Antimicrobial Agents and Chemotherapy.

[68]  Edward P. Zovinka,et al.  Characterization of the metal-binding sites of the beta-lactamase from Bacteroides fragilis. , 1996, Biochemistry.

[69]  J. Ghuysen,et al.  Molecular structures of penicillin-binding proteins and β-lactamases , 1994 .

[70]  R. Ambler,et al.  The structure of beta-lactamases. , 1980, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[71]  B. Atanasov,et al.  Protonation of the beta-lactam nitrogen is the trigger event in the catalytic action of class A beta-lactamases. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[72]  J. Frère,et al.  The beta-lactamase cycle: a tale of selective pressure and bacterial ingenuity. , 1999, Natural product reports.

[73]  J Moult,et al.  Bacterial resistance to beta-lactam antibiotics: crystal structure of beta-lactamase from Staphylococcus aureus PC1 at 2.5 A resolution. , 1987, Science.

[74]  J. Frère,et al.  The roles of residues Tyr150, Glu272, and His314 in class C β‐lactamases , 1996 .

[75]  G. French,et al.  Carbapenem Resistance in Escherichia coli Associated with Plasmid-Determined CMY-4 β-Lactamase Production and Loss of an Outer Membrane Protein , 1999, Antimicrobial Agents and Chemotherapy.

[76]  J M Masson,et al.  Crystal structure of Escherichia coli TEM1 β‐lactamase at 1.8 Å resolution , 1993, Proteins.

[77]  Wanzhi Huang,et al.  Selection and Characterization of Amino Acid Substitutions at Residues 237-240 of TEM-1 β-Lactamase with Altered Substrate Specificity for Aztreonam and Ceftazidime* , 1996, The Journal of Biological Chemistry.

[78]  E. Billings,et al.  Crystallographic structure of a phosphonate derivative of the Enterobacter cloacae P99 cephalosporinase: mechanistic interpretation of a beta-lactamase transition-state analog. , 1994, Biochemistry.

[79]  S. Mobashery,et al.  Effects of Asp-179 mutations in TEMpUC19 beta-lactamase on susceptibility to beta-lactams , 1995, Antimicrobial agents and chemotherapy.

[80]  Wanzhi Huang,et al.  A natural polymorphism in beta-lactamase is a global suppressor. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[81]  T. Palzkill,et al.  The Role of Residue 238 of TEM-1 β-Lactamase in the Hydrolysis of Extended-spectrum Antibiotics* , 1998, The Journal of Biological Chemistry.