Direct sampling on surfaces for high quality remeshing

Isotropic point distribution is crucial in remeshing process to generate a high-quality mesh. In this paper, we present a novel algorithm of isotropic sampling on two-manifold mesh surface. Our main contribution lies in the successful generalization of a 2D fast Poisson disk sampling algorithm, which makes it able to sample directly 3D mesh surfaces, including feature edges. We adopt geodesic distance as the distance metric for sampling algorithm in 3D to better capture the geometry information. Given a density function over the surface, we derive a close analytic form of the available boundary, which makes our algorithm support efficient adaptive sampling. To further improve the isotropy of point distribution, Lloyd relaxation is performed locally to optimize the location of sampling points. The whole process guarantees that new vertices lie on the original surface. Mutual tessellation is utilized to reconstruct the connectivity of new vertices, which guarantees the fidelity and validity of topology. Experiments show that our algorithm is able to remesh an arbitrary closed manifold into a high-quality mesh with large minimal angles and small number of irregular vertices.

[1]  Robert L. Cook,et al.  Stochastic sampling in computer graphics , 1988, TOGS.

[2]  Marco Attene,et al.  Recent Advances in Remeshing of Surfaces , 2008, Shape Analysis and Structuring.

[3]  Neil A. Dodgson,et al.  Advances in Multiresolution for Geometric Modelling , 2005 .

[4]  Martin Isenburg,et al.  Isotropic surface remeshing , 2003, 2003 Shape Modeling International..

[5]  Ares Lagae,et al.  An alternative for Wang tiles: colored edges versus colored corners , 2006, TOGS.

[6]  Dave Shreiner,et al.  ACM SIGGRAPH 2006 Courses , 2006, SIGGRAPH 2006.

[7]  Jie Zhang,et al.  3D triangular mesh optimization in geometry processing for CAD , 2007, Symposium on Solid and Physical Modeling.

[8]  Kellogg S. Booth,et al.  Proceedings of the conference on Graphics interface '92 , 1992 .

[9]  Laurent D. Cohen,et al.  Geodesic Remeshing Using Front Propagation , 2003, International Journal of Computer Vision.

[10]  Steven J. Gortler,et al.  Geometry images , 2002, SIGGRAPH.

[11]  Mark Meyer,et al.  Interactive geometry remeshing , 2002, SIGGRAPH.

[12]  V. Ostromoukhov Sampling with polyominoes , 2007, SIGGRAPH 2007.

[13]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[14]  Tony DeRose,et al.  Surface reconstruction from unorganized points , 1992, SIGGRAPH.

[15]  Qiang Du,et al.  Convergence of the Lloyd Algorithm for Computing Centroidal Voronoi Tessellations , 2006, SIAM J. Numer. Anal..

[16]  Dinesh Manocha,et al.  Proceedings of the 2007 ACM Symposium on Solid and Physical Modeling, Beijing, China, June 4-6, 2007 , 2007, Symposium on Solid and Physical Modeling.

[17]  Bingfeng Zhou,et al.  Improving mid-tone quality of variable-coefficient error diffusion using threshold modulation , 2003, ACM Trans. Graph..

[18]  Paolo Cignoni,et al.  Metro: Measuring Error on Simplified Surfaces , 1998, Comput. Graph. Forum.

[19]  Craig Gotsman,et al.  Explicit Surface Remeshing , 2003, Symposium on Geometry Processing.

[20]  Steve Oudot,et al.  Provably Good Surface Sampling and Approximation , 2003, Symposium on Geometry Processing.

[21]  Cláudio T. Silva,et al.  Direct (Re)Meshing for Efficient Surface Processing , 2006, Comput. Graph. Forum.

[22]  Pierre Alliez,et al.  Isotropic Remeshing of Surfaces: A Local Parameterization Approach , 2003, IMR.

[23]  Greg Humphreys,et al.  A spatial data structure for fast Poisson-disk sample generation , 2006, SIGGRAPH 2006.

[24]  Eugene Fiume,et al.  Hierarchical Poisson disk sampling distributions , 1992 .

[25]  Thouis R. Jones Efficient Generation of Poisson-Disk Sampling Patterns , 2006, J. Graph. Tools.

[26]  Mark A. Z. Dippé,et al.  Antialiasing through stochastic sampling , 1985, SIGGRAPH.

[27]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[28]  Kun Zhou,et al.  Mesh editing with poisson-based gradient field manipulation , 2004, SIGGRAPH 2004.

[29]  H.-P. Seidel,et al.  Dynamic remeshing and applications , 2003, SM '03.

[30]  Dani Lischinski,et al.  Recursive Wang tiles for real-time blue noise , 2006, SIGGRAPH 2006.

[31]  K.B. White,et al.  Poisson Disk Point Sets by Hierarchical Dart Throwing , 2007, 2007 IEEE Symposium on Interactive Ray Tracing.

[32]  Mark Meyer,et al.  Intrinsic Parameterizations of Surface Meshes , 2002, Comput. Graph. Forum.

[33]  S. A. Lloyd An optimization approach to relaxation labelling algorithms , 1983, Image Vis. Comput..

[34]  Allen Gersho,et al.  Asymptotically optimal block quantization , 1979, IEEE Trans. Inf. Theory.

[35]  Christian Rössl,et al.  Geometric modeling based on triangle meshes , 2006, SIGGRAPH Courses.

[36]  Michael S. Floater,et al.  Parametrization and smooth approximation of surface triangulations , 1997, Comput. Aided Geom. Des..

[37]  Tamal K. Dey,et al.  Sampling and meshing a surface with guaranteed topology and geometry , 2004, SCG '04.

[38]  Peter G. Anderson,et al.  Linear pixel shuffling for image processing: an introduction , 1993, J. Electronic Imaging.

[39]  S. Gortler,et al.  Fast exact and approximate geodesics on meshes , 2005, SIGGRAPH 2005.

[40]  David P. Dobkin,et al.  MAPS: multiresolution adaptive parameterization of surfaces , 1998, SIGGRAPH.

[41]  S. Rusinkiewicz Estimating curvatures and their derivatives on triangle meshes , 2004 .

[42]  Peter Schröder,et al.  Proceedings of the 2003 Eurographics/ACM SIGGRAPH symposium on Geometry processing , 2003 .

[43]  Greg Turk,et al.  Re-tiling polygonal surfaces , 1992, SIGGRAPH.

[44]  Ares Lagae,et al.  A Comparison of Methods for Generating Poisson Disk Distributions , 2008, Comput. Graph. Forum.