Snow avalanche susceptibility of the Circo de Gredos (Iberian Central System, Spain)

ABSTRACT We present a detailed snow avalanche susceptibility map at scale 1:20,000 of the Circo de Gredos in the Sierra de Gredos (Iberian Central System, Spain). This cirque-shaped landscape is one of the most popular spots for winter sports in the region. However, no snow avalanche activity assessment has been conducted to date. We have, therefore, produced a snow avalanche susceptibility map based on aerial and satellite imagery, newspaper reviews and field work, including avalanche features recognition and interviews with frequent backcountry users. We extracted the spatial distribution of necessary and enhancer factors for triggering slab, wet and loose snow avalanches from a digital elevation model. Finally, calculations to evaluate each snow avalanche type susceptibility were performed using a Geographical Information System. By combining our map collection, we concluded that most of the area in the Circo de Gredos is highly susceptible to snow avalanches, especially slab and wet snow types.

[1]  G. Vieira,et al.  Reforestation and land use change as drivers for a decrease of avalanche damage in mid-latitude mountains (NW Spain) , 2017 .

[2]  A. Ceballos,et al.  Daily gridded datasets of snow depth and snow water equivalent for the Iberian Peninsula from 1980 to 2014 , 2017 .

[3]  Marc Christen,et al.  RAMMS: numerical simulation of dense snow avalanches in three-dimensional terrain , 2010 .

[4]  Salvador Beato Bergua,et al.  Snow avalanche susceptibility in the eastern hillside of the Aramo Range (Asturian Central Massif, Cantabrian Mountains, NW Spain) , 2018 .

[5]  Andreas Stoffel,et al.  Automated identification of potential snow avalanche release areas based on digital elevation models , 2013 .

[6]  J. González,et al.  LOS ALUDES DE NIEVE EN EL ALTO SIL (OESTE DE LA CORDILLERA CANTÁBRICA, ESPAÑA) , 2010 .

[7]  J. L. P. Monné,et al.  Cartografía de zonas probables de aludes en el Pirineo aragonés: metodología y resultados , 2000 .

[8]  L. Vázquez-selem,et al.  Maximum glacial advance and deglaciation of the Pinar Valley (Sierra de Gredos, Central Spain) and its significance in the Mediterranean context , 2012 .

[9]  J. Pedraza,et al.  The plateau glacier in the Sierra de Béjar (Iberian Central System) during its maximum extent. Reconstruction and chronology , 2013 .

[10]  Andreas Paul Zischg,et al.  Avalanche risk assessment – a multi-temporal approach, results from Galtür, Austria , 2006 .

[11]  Caracterización y tipología de canales de aludes en el valle de Ordesa (Pirineo central español) Characterization and typology of avalanche tracks in the Ordesa valley (Spanish , 2004 .

[12]  M. Maggioni,et al.  The influence of topographic parameters on avalanche release dimension and frequency , 2003 .

[13]  John F. Shroder,et al.  Snow and Ice-Related Hazards, Risks, and Disasters , 2018 .

[14]  Peter Sampl,et al.  Avalanche simulation with SAMOS , 2004, Annals of Glaciology.

[15]  M. Frochoso,et al.  Evaluación y cartografía del riesgo de aludes en el camino PR-PNPE 21 de acceso a la Vega de Urriellu, Picos de Europa (Noroeste de España) , 2012 .

[16]  D. Palacios,et al.  The influence of the géomorphologic heritage on present slope dynamics. The Gredos Cirque, Spain , 1995 .

[17]  Francesco Ferro,et al.  Avalanche hazard mapping over large undocumented areas , 2011 .

[18]  J. Pedraza,et al.  Sequence and chronology of the Cuerpo de Hombre paleoglacier (Iberian Central System) during the last glacial cycle , 2015 .

[19]  J. M. Jiménez,et al.  Observaciones sobre la morfología del Alto Gredos , 1972 .

[20]  María Palomo Segovia,et al.  Delimitación espacial de las zonas probables de salida de aludes en el macizo de Peñalara mediante el uso de SIG , 2014 .

[21]  L. Vázquez-selem,et al.  Last Glacial Maximum and deglaciation of Sierra de Gredos, central Iberian Peninsula , 2011 .

[22]  J. Pedraza,et al.  Late Pleistocene glacial evolutionary stages in the Gredos Mountains (Iberian Central System) , 2013 .

[23]  Ross S. Purves,et al.  Potential slab avalanche release area identification from estimated winter terrain: a multi-scale, fuzzy logic approach , 2015 .

[24]  M Edwin “Avalanche risk assessment a multi temporal approach, results from Galtür, Austria“, de M. Keiler, R. Sailer, P. Jörg, C. Weber, S. Fuchs, A. Zischg, and S. Sauermoser , 1970 .

[25]  J. Schweizer,et al.  Snow avalanche formation , 2003 .

[26]  J. Schweizer,et al.  Chapter 12 – Snow Avalanches , 2015 .

[27]  Miguel Ángel Poblete Piedrabuena,et al.  Snow avalanche susceptibility in the eastern hillside of the Aramo Range (Asturian Central Massif, Cantabrian Mountains, NW Spain) , 2018, Journal of Maps.

[28]  Andreas Stoffel,et al.  Automated snow avalanche release area delineation – validation of existing algorithms and proposition of a new object-based approach for large-scale hazard indication mapping , 2018, Natural Hazards and Earth System Sciences.

[29]  Javier Chueca Cía,et al.  A proposal for avalanche susceptibility mapping in the Pyrenees using GIS: the Formigal-Peyreget area (Sheet 145-I; scale 1:25.000) , 2014 .

[30]  R. Gutiérrez,et al.  Avalanches in the Alto Sil (Western Cantabrian Mountain, spain) , 2010 .

[31]  E. García‐Ortega,et al.  Numerical diagnosis of a heavy snowfall event in the center of the Iberian Peninsula , 2015 .