A micromechanics-based analytical solution for the effective thermal conductivity of composites with orthotropic matrices and interfacial thermal resistance

We obtained an analytical solution for the effective thermal conductivity of composites composed of orthotropic matrices and spherical inhomogeneities with interfacial thermal resistance using a micromechanics-based homogenization. We derived the closed form of a modified Eshelby tensor as a function of the interfacial thermal resistance. We then predicted the heat flux of a single inhomogeneity in the infinite media based on the modified Eshelby tensor, which was validated against the numerical results obtained from the finite element analysis. Based on the modified Eshelby tensor and the localization tensor accounting for the interfacial resistance, we derived an analytical expression for the effective thermal conductivity tensor for the composites by a mean-field approach called the Mori-Tanaka method. Our analytical prediction matched very well with the effective thermal conductivity obtained from finite element analysis with up to 10% inhomogeneity volume fraction.

[1]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[2]  M. Odén,et al.  Nanoindentation studies of single‐crystal (001)‐, (011)‐, and (111)‐oriented TiN layers on MgO , 1996 .

[3]  D. R. Anderson Thermal Conductivity of Polymers , 1966 .

[4]  Alain Molinari,et al.  Thermal conductivity of composite material with coated inclusions: Applications to tetragonal array of spheroids , 2000 .

[5]  Joseph Khedari,et al.  New lightweight composite construction materials with low thermal conductivity , 2001 .

[6]  Helmut J. Böhm,et al.  Mori–Tanaka models for the thermal conductivity of composites with interfacial resistance and particle size distributions , 2008 .

[7]  Pier Luca Palla,et al.  Dielectric behavior of anisotropic inhomogeneities: interior and exterior point Eshelby tensors , 2008 .

[8]  J. Selman,et al.  Thermal conductivity enhancement of phase change materials using a graphite matrix , 2006 .

[9]  C. Nan,et al.  Effective thermal conductivity of particulate composites with interfacial thermal resistance , 1997 .

[10]  S. Phillpot,et al.  Anisotropic thermal properties in orthorhombic perovskites , 2010, Journal of Materials Science.

[11]  Yuanhua Lin,et al.  Interface effect on thermal conductivity of carbon nanotube composites , 2004 .

[12]  Yuanli Liu,et al.  Enhanced thermal conductivity of epoxy composites filled with silicon carbide nanowires , 2017, Scientific Reports.

[13]  Joost J. Vlassak,et al.  Measuring the elastic properties of anisotropic materials by means of indentation experiments , 1994 .

[14]  S. Ahzi,et al.  Modeling of two-phase random composite materials by finite element, Mori–Tanaka and strong contrast methods , 2013 .

[15]  Minoru Taya,et al.  Effective thermal conductivity of a misoriented short fiber composite , 1985 .

[16]  J. Molina-Aldareguia,et al.  Predicting the thermal conductivity of composite materials with imperfect interfaces , 2010 .

[17]  Q. He,et al.  Eshelby's tensor fields and effective conductivity of composites made of anisotropic phases with Kapitza's interface thermal resistance , 2011 .

[18]  H. Ishida,et al.  Very high thermal conductivity obtained by boron nitride-filled polybenzoxazine , 1998 .

[19]  Kailun Yao,et al.  High-efficient thermoelectric materials: The case of orthorhombic IV-VI compounds , 2015, Scientific Reports.

[20]  Jan Vorel,et al.  Correction: Sejnoha, M. et al. Mori-Tanaka Based Estimates of Effective Thermal Conductivity of Various Engineering Materials. Micromachines 2011, 2, 129-149 , 2011, Micromachines.

[21]  M. Itkis,et al.  Graphite Nanoplatelet−Epoxy Composite Thermal Interface Materials , 2007 .

[22]  Ching-Ping Wong,et al.  Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging , 1999 .

[23]  Gang Chen,et al.  Modified effective medium formulation for the thermal conductivity of nanocomposites , 2007 .

[24]  Yuh-Chung Wang,et al.  Effective thermal conductivity of misoriented short-fiber reinforced thermoplastics , 1996 .

[25]  A. Sari,et al.  Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage , 2011 .

[26]  Gaosheng Wei,et al.  Thermal conductivities study on silica aerogel and its composite insulation materials , 2011 .

[27]  Guangyuan Zheng,et al.  Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. , 2014, Nano letters.

[28]  Kun Wu,et al.  Encapsulation of Graphite Nanoflakes for Improving Thermal Conductivity of Mesogenic Epoxy Composites , 2017 .

[29]  Nobuo Takeda,et al.  Effect of interfacial adhesion and statistical fiber strength on tensile strength of unidirectional glass fiber/epoxy composites. Part I: experiment results , 2000 .

[30]  A. Sehirlioglu,et al.  Polymer composites for thermoelectric applications. , 2015, Angewandte Chemie.

[31]  Alain Sommier,et al.  Thermal management of electronic devices using carbon foam and PCM/nano-composite , 2015 .

[32]  Hatta Hiroshi,et al.  Equivalent inclusion method for steady state heat conduction in composites , 1986 .

[33]  I. Singh,et al.  Effect of interface on the thermal conductivity of carbon nanotube composites , 2007 .

[34]  Jan Vorel,et al.  Mori-Tanaka Based Estimates of Effective Thermal Conductivity of Various Engineering Materials , 2011, Micromachines.

[35]  Yibin Xu,et al.  Automatic FEM model generation for evaluating thermal conductivity of composite with random materials arrangement , 2004 .

[36]  C. Matt,et al.  Effective Thermal Conductivity of Composite Materials with 3-D Microstructures and Interfacial Thermal Resistance , 2007 .

[37]  D. Venerus,et al.  Anisotropic thermal conduction in polymer melts in uniaxial elongation flows , 2013 .

[38]  K. Goodson,et al.  Managing heat for electronics , 2005 .

[39]  D. Heikens,et al.  The effect of interfacial adhesion on the tensile behavior of polystyrene–glass‐bead composites , 1983 .

[40]  O. Levy,et al.  Effective medium approximations for anisotropic composites with arbitrary component orientation , 2013 .

[41]  Fangyuan Sun,et al.  Anisotropic thermal conductivity in single crystal β-gallium oxide , 2015 .

[42]  K. Kurabayashi Anisotropic Thermal Properties of Solid Polymers , 2001 .

[43]  Xingyi Huang,et al.  A review of dielectric polymer composites with high thermal conductivity , 2011, IEEE Electrical Insulation Magazine.

[44]  A. Sari,et al.  Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material , 2007 .

[45]  D. Yoon,et al.  Enhanced thermal conductivity of polymer composites via hybrid fillers of anisotropic aluminum nitride whiskers and isotropic spheres , 2017 .

[46]  Mark F. Horstemeyer,et al.  Structural, elastic, and thermal properties of cementite ( Fe 3 C ) calculated using a modified embedded atom method , 2012, 1202.3068.

[47]  J. Kumpfert Intermetallic Alloys Based on Orthorhombic Titanium Aluminide , 2001 .

[48]  M. Cho,et al.  Multiscale modeling of cross-linked epoxy nanocomposites to characterize the effect of particle size on thermal conductivity , 2011 .

[49]  Yibin Xu,et al.  Calculation of the Thermal Conductivity of Randomly Dispersed Composites using a Finite Element Modeling Method , 2004 .