Beryllium and its Alloys as Neutron Multiplying Materials

[1]  R. Knitter,et al.  Development and qualification of functional materials for the European HCPB TBM , 2018, Fusion Engineering and Design.

[2]  Y. Sakamoto,et al.  Modeling of chemical reactions of beryllium/beryllide pebbles with steam for hydrogen safety design of water-cooled DEMO , 2018, Fusion Engineering and Design.

[3]  Kazuo Hoshino,et al.  Overview of the DEMO conceptual design activity in Japan , 2018, Fusion Engineering and Design.

[4]  P. Vladimirov,et al.  Ab initio study of Be and Be12Ti for fusion applications , 2018, Intermetallics.

[5]  A. Tkatchenko,et al.  Performance of various density-functional approximations for cohesive properties of 64 bulk solids , 2018, New Journal of Physics.

[6]  Jae-Hwan Kim,et al.  Thermal properties of beryllides as advanced neutron multipliers for DEMO fusion application , 2018 .

[7]  Jae-Hwan Kim,et al.  Characterization of vanadium beryllide pebble bed for the Japan DEMO blanket application , 2018, Fusion Engineering and Design.

[8]  Jae-Hwan Kim,et al.  Prevention of hydrogen generation reaction with water vapor by surface modification of beryllides as advanced neutron multipliers , 2017 .

[9]  Jae-Hwan Kim,et al.  Thermal analyses of beryllide pebbles in water vapor atmosphere as advanced neutron multipliers , 2017 .

[10]  P. Vladimirov,et al.  Ab initio study of beryllium surfaces with different hydrogen coverages , 2017 .

[11]  P. Burr,et al.  Defect processes in Be12X (X = Ti, Mo, V, W) , 2017 .

[12]  C. Densham,et al.  Irradiation effects in beryllium exposed to high energy protons of the NuMI neutrino source , 2017 .

[13]  Pingping Liu,et al.  Microstructure evolution of beryllium with argon ion irradiation , 2017 .

[14]  Jae-Hwan Kim,et al.  Development of beryllide pebbles with low-hydrogen generation as advanced neutron multipliers , 2017 .

[15]  Jae-Hwan Kim,et al.  Reactivity and deuterium retention properties of titanium-beryllium intermetallic compounds , 2017 .

[16]  Masaru Nakamichi,et al.  Fabrication and characterization of advanced neutron multipliers for DEMO blanket , 2016 .

[17]  P. Vladimirov,et al.  Multiscale modelling of hydrogen behaviour on beryllium (0001) surface , 2016 .

[18]  V. Chakin,et al.  Tritium and helium release from beryllium pebbles neutron-irradiated up to 230 appm tritium and 3000 appm helium , 2016 .

[19]  Jae-Hwan Kim,et al.  Mechanical behavior of Be-Ti pebbles at blanket relevant temperatures , 2016 .

[20]  Kentaro Ochiai,et al.  Beryllide pebble fabrication of Be–Zr compositions as advanced neutron multipliers , 2016 .

[21]  Masaru Nakamichi,et al.  Synthesis and characteristics of ternary Be–Ti–V beryllide pebbles as advanced neutron multipliers , 2016 .

[22]  P. Vladimirov,et al.  Simulation of hydrogen effect on equilibrium shape of gas bubbles in beryllium , 2016 .

[23]  Z. Zhong,et al.  Proton irradiation effects on beryllium – A macroscopic assessment☆ , 2016 .

[24]  O. Ivasishin,et al.  On Energetics of Formation of Small Vacancy Complexes in the H.C.P. Beryllium , 2016 .

[25]  W. Gulden,et al.  Thermohydraulic Analysis of Accident Scenarios of a Fusion DEMO Reactor Based on Water-Cooled Ceramic Breeder Blanket: Analysis of LOCAs and LOVA , 2016, IEEE Transactions on Plasma Science.

[26]  Jae-Hwan Kim,et al.  Reactivity with water vapor and hydrogen storage capacity of Be2Ti compound , 2016 .

[27]  X. Zu,et al.  First-principles study on the adsorption and dissociation of H2 molecules on Be(0 0 0 1) surfaces , 2016 .

[28]  Ping Zhang,et al.  First-principles study of migration and diffusion mechanisms of helium in α-Be , 2016 .

[29]  P. Burr,et al.  Resolving the structure of TiBe12. , 2016, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[30]  Jae-Hwan Kim,et al.  Hydrogen retention behavior of beryllides as advanced neutron multipliers , 2016 .

[31]  P. Vladimirov,et al.  Ab initio study of hydrogen on beryllium surfaces , 2015 .

[32]  V. Chakin,et al.  Tritium and helium release from highly neutron irradiated titanium beryllide , 2015 .

[33]  Jae-Hwan Kim,et al.  Effect of titanium content on mechanical properties and reactivity of titanium beryllide pebbles , 2015 .

[34]  Masaru Nakamichi,et al.  Fabrication and hydrogen generation reaction with water vapor of prototypic pebbles of binary beryllides as advanced neutron multiplier , 2015 .

[35]  S. Peng Theoretical investigations on the structural, elastic and electronic properties of binary Beryllides under pressure , 2015 .

[36]  Jae-Hwan Kim,et al.  Synthesis of Be–Ti–V ternary beryllium intermetallic compounds , 2015 .

[37]  S. Peng,et al.  First-principles investigation of the structural and elastic properties of Be12Ti under high pressure , 2015 .

[38]  V. Chakin,et al.  Tritium release from highly neutron irradiated constrained and unconstrained beryllium pebbles , 2015 .

[39]  V. Chakin,et al.  Mechanical compression tests of beryllium pebbles after neutron irradiation up to 3000 appm helium production , 2015 .

[40]  Jae-Hwan Kim,et al.  Reactivity of plasma-sintered beryllium-titanium intermetallic compounds with water vapor , 2014 .

[41]  V. Chakin,et al.  TEM study of impurity segregations in beryllium pebbles , 2014 .

[42]  Taisuke Yonomoto,et al.  Key Aspects of the Safety Study of a Water-Cooled Fusion DEMO Reactor ∗) , 2014 .

[43]  Jae-Hwan Kim,et al.  Effect of plasma-sintering consolidation on the reactivity of beryllium , 2014 .

[44]  Jae-Hwan Kim,et al.  Effect of grain size on the hardness and reactivity of plasma-sintered beryllium , 2014 .

[45]  Masaru Nakamichi,et al.  Fabrication of beryllide pebble as advanced neutron multiplier , 2014 .

[46]  Taisuke Yonomoto,et al.  Study of safety features and accident scenarios in a fusion DEMO reactor , 2014 .

[47]  Y. Ferro,et al.  Hydrogen retention and diffusion in tungsten beryllide , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[48]  S. De,et al.  Pressure effect on stabilities of self-Interstitials in HCP-Zirconium , 2014, Scientific Reports.

[49]  A. Moeslang,et al.  Ab initio static and molecular dynamics studies of helium behavior in beryllium , 2013 .

[50]  V. Chakin,et al.  TEM study of beryllium pebbles after neutron irradiation up to 3000 appm helium production , 2013 .

[51]  A. Fedorov,et al.  Analysis of tritium retention in beryllium pebbles in EXOTIC, PBA and HIDOBE-01 experiments , 2013 .

[52]  A. Fedorov,et al.  Tritium release from beryllium pebbles after high temperature irradiation up to 3000 appm He in the HIDOBE-01 experiment , 2013 .

[53]  R. Rolli,et al.  Tritium release and retention properties of highly neutron-irradiated beryllium pebbles from HIDOBE-01 experiment , 2013 .

[54]  Jae-Hwan Kim,et al.  Preliminary characterization of plasma-sintered beryllides as advanced neutron multipliers , 2013 .

[55]  V. Chakin,et al.  Characteristics of microstructure, swelling and mechanical behaviour of titanium beryllide samples after high-dose neutron irradiation at 740 and 873 K , 2013 .

[56]  Masaru Nakamichi,et al.  Homogenization treatment to stabilize the compositional structure of beryllide pebbles , 2013 .

[57]  Masaru Nakamichi,et al.  Oxidation behavior of plasma sintered beryllium–titanium intermetallic compounds as an advanced neutron multiplier , 2013 .

[58]  C. Domain,et al.  Self-interstitial defects in hexagonal close packed metals revisited: Evidence for low-symmetry configurations in Ti, Zr, and Hf , 2013 .

[59]  Jae-Hwan Kim,et al.  Development of a synthesis method of beryllides as advanced neutron multiplier for DEMO reactors , 2012 .

[60]  G. N. Nikolaev,et al.  Production and investigation of beryllium pebbles with fine grain structure for the HCPB breeder blanket , 2012 .

[61]  V. Chakin,et al.  Thermal conductivity of highly neutron-irradiated beryllium in nuclear fusion reactors , 2012 .

[62]  A. Timoshevskii,et al.  On chemical bonding and helium distribution in hcp beryllium , 2011, 1111.4138.

[63]  L. V. Boccaccini,et al.  Present status of the conceptual design of the EU test blanket systems , 2011 .

[64]  J.B.J. Hegeman,et al.  Evolution of beryllium pebbles (HIDOBE) in long term, high flux irradiation in the high flux reactor , 2011 .

[65]  V. Chakin,et al.  Microstructural and tritium release examination of titanium beryllides , 2011 .

[66]  R. Grimes,et al.  Defects and transport processes in beryllium , 2011 .

[67]  N. Franco,et al.  Comparative study of fusion relevant properties of Be12V and Be12Ti , 2011 .

[68]  N. Asakura,et al.  Simplification of blanket system for SlimCS fusion DEMO reactor , 2011 .

[69]  K. Shibata,et al.  JENDL-4.0: A New Library for Nuclear Science and Engineering , 2011 .

[70]  I. Ricapito,et al.  Tritium breeder blankets design and technologies in Europe: Development status of ITER Test Blanket Modules, test & qualification strategy and roadmap towards DEMO , 2010 .

[71]  K. Schwarz,et al.  Electronic structure of solids with WIEN2k , 2010 .

[72]  C. Linsmeier,et al.  Quantum Modeling of Hydrogen Retention in Beryllium Bulk and Vacancies , 2010 .

[73]  Ping Zhang,et al.  Dissociation of hydrogen molecules on the clean and hydrogen-preadsorbed Be(0001) surface , 2009, 0907.2103.

[74]  C. Linsmeier,et al.  Ion implanted deuterium retention and release from clean and oxidized beryllium , 2009 .

[75]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[76]  P. Vladimirov,et al.  Vacancies, interstitials and gas atoms in beryllium , 2009 .

[77]  R. Nieminen,et al.  Hydrogen in beryllium: solubility, transport and trapping , 2009 .

[78]  A. Moeslang,et al.  On the influence of vacancies on the electronic properties of beryllium , 2007 .

[79]  H. Kawamura,et al.  Recent results on beryllium and beryllides in Japan , 2007 .

[80]  G. N. Nikolaev,et al.  Desorption of tritium and helium from high dose neutron irradiated beryllium , 2007 .

[81]  H. Kawamura,et al.  Kinetics of reaction with water vapor and ab initio study of titanium beryllide , 2007 .

[82]  S. Zalkind,et al.  The initial interactions of beryllium with O2 and H2O vapor at elevated temperatures , 2007 .

[83]  C. Linsmeier,et al.  Temperature programmed desorption of 1 keV deuterium implanted into clean beryllium , 2007 .

[84]  V. Borodin,et al.  Ab initio study of small vacancy complexes in beryllium , 2007 .

[85]  Aleksandr B Stefaniak,et al.  Beryllium exposure: dermal and immunological considerations , 2006, International archives of occupational and environmental health.

[86]  S. Dorofeev,et al.  Dust explosion hazard in ITER : Explosion indices of fine graphite and tungsten dusts and their mixtures , 2005 .

[87]  A. Möslang,et al.  The HFR Petten high dose irradiation programme of beryllium for blanket application , 2005 .

[88]  Zhigang Wu,et al.  More accurate generalized gradient approximation for solids , 2005, cond-mat/0508004.

[89]  Hiroshi Kawamura,et al.  Stability of titanium beryllide under water vapor , 2004 .

[90]  V. Gorokhov,et al.  The effect of helium generation and irradiation temperature on tritium release from neutron irradiated beryllium , 2004 .

[91]  Hiroshi Kawamura,et al.  Present status of beryllide R&D as neutron multiplier , 2004 .

[92]  T. Darling,et al.  Beryllium's monocrystal and polycrystal elastic constants , 2004 .

[93]  Hiroshi Kawamura,et al.  Thermal conductivity of neutron irradiated Be12Ti , 2003 .

[94]  A. Ying,et al.  Experimental Investigation and Analysis of the Effective Thermal Properties of Beryllium Packed Beds , 2003 .

[95]  V. Kazakov,et al.  Effects of neutron irradiation at 70–200 °C in beryllium , 2002 .

[96]  V. Chakin,et al.  Evolution of beryllium microstructure under high-dose neutron irradiation , 2002 .

[97]  V. Chakin,et al.  Influence of high dose neutron irradiation on thermal conductivity of beryllium , 2002 .

[98]  Hiroshi Kawamura,et al.  Tritium release properties of neutron-irradiated Be12Ti , 2002 .

[99]  Alice Ying,et al.  Thermomechanics of solid breeder and Be pebble bed materials , 2002 .

[100]  H. Kawamura,et al.  Application of beryllium intermetallic compounds to neutron multiplier of fusion blanket , 2002 .

[101]  D. Paustenbach,et al.  Contribution of incidental exposure pathways to total beryllium exposures. , 2001, Applied occupational and environmental hygiene.

[102]  T. Terai,et al.  Effects of helium production and radiation damage on tritium release behavior of neutron-irradiated beryllium pebbles , 2000 .

[103]  Hiroshi Kawamura,et al.  The status of beryllium technology for fusion , 2000 .

[104]  David A. Petti,et al.  On the mechanisms associated with the chemical reactivity of Be in steam , 2000 .

[105]  M. Dalle Donne,et al.  Experimental Investigations on the Thermal and Mechanical Behavior of Single Size Beryllium Pebble Beds , 2000 .

[106]  R. Anderl,et al.  Steam Chemical Reactivity of Be Pebbles and Be Powder , 2000 .

[107]  V. Gorokhov,et al.  The effect of neutron irradiation on beryllium performance , 2000 .

[108]  D. Sánchez-Portal,et al.  LINEAR-SCALING AB-INITIO CALCULATIONS FOR LARGE AND COMPLEX SYSTEMS , 1999, cond-mat/9904159.

[109]  T. Inoue,et al.  Microstructural evolution in beryllium by fusion-relevant low energy helium ion irradiation , 1999 .

[110]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[111]  T. Terai,et al.  Microstructure and mechanical properties of neutron irradiated beryllium , 1998 .

[112]  David A. Petti,et al.  Steam-chemical reactivity for irradiated beryllium , 1998 .

[113]  H. Kawamura,et al.  Beryllium neutron irradiation study in the Japan Materials Testing Reactor , 1998 .

[114]  M. Fähnle,et al.  Hydrogen and vacancies in the tokamak plasma-facing material beryllium , 1998 .

[115]  R. Stumpf H-INDUCED RECONSTRUCTION AND FACETING OF AL SURFACES , 1997 .

[116]  V. N. Chernikov,et al.  Thermal desorption of deuterium implanted into beryllium , 1996 .

[117]  V. Gorokhov,et al.  Status of beryllium materials for fusion application , 1996 .

[118]  R. Sakamoto,et al.  Radiation damage and deuterium trapping in deuterium ion injected beryllium , 1996 .

[119]  V. Alimov,et al.  Gas-induced swelling of beryllium implanted with deuterium ions , 1996 .

[120]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[121]  Stumpf H-enhanced mobility and defect formation at surfaces: H on Be(0001). , 1996, Physical review. B, Condensed matter.

[122]  V. Alimov,et al.  Gas swelling and related phenomena in beryllium implanted with deuterium ions , 1996 .

[123]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[124]  Stumpf,et al.  Interaction of hydrogen with the Be(0001) surface. , 1995, Physical review. B, Condensed matter.

[125]  F. Moons,et al.  Helium content and induced swelling of neutron irradiated beryllium , 1995 .

[126]  H. Kawamura,et al.  Estimation of the tritium production and inventory in beryllium , 1995 .

[127]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[128]  Hiroshi Kawamura,et al.  Radiation effects in beryllium used for plasma protection , 1994 .

[129]  J. L. Brimhall,et al.  Hot-hardness comparisons among isostructural Be_12X intermetallic compounds , 1993 .

[130]  W. Wampler Trapping of deuterium in beryllium , 1992 .

[131]  Brad J. Merrill,et al.  Implications of beryllium : steam interactions in fusion reactors , 1992 .

[132]  R. Causey,et al.  Beryllium---a better tokamak plasma-facing material , 1990 .

[133]  F. Yamashita,et al.  New method of making Nd-Fe-Co-B full dense magnet , 1990, International Conference on Magnetics.

[134]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[135]  A. James Stonehouse,et al.  Physics and chemistry of beryllium , 1986 .

[136]  D. Collins,et al.  The redetermination of the structure of beryllium–molybdenum MoBe12 , 1984 .

[137]  L. G. Miller,et al.  Comparison of compression properties and swelling of beryllium irradiated at various temperatures , 1984 .

[138]  R. A. Langley Interaction of implanted deuterium and helium with beryllium: Radiation enhanced oxidation , 1979 .

[139]  Shaswat Kumar Das,et al.  Reduction of surface erosion caused by helium blistering in sintered beryllium and sintered aluminum powder , 1976 .

[140]  Joseph Callaway,et al.  Inhomogeneous Electron Gas , 1973 .

[141]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[142]  W. W. Beaver,et al.  High Temperature Oxidation Resistance of the Beryllides , 1964 .

[143]  S. J. Gregg,et al.  The high temperature oxidation of beryllium. Part IV In water vapour and in moist oxygen , 1961 .

[144]  S. J. Gregg,et al.  A note on "A nonequilibrium theory of thermoelastic superconductors" by S.A. Zhou and K. Miya , 1960 .

[145]  D. Sands,et al.  Crystal structure of Nb3Be2 , 1960 .

[146]  D. Sands,et al.  The crystal structure of Nb2Be17 , 1959 .

[147]  R. G. Bedford,et al.  Crystal structures of ZrBe5 and Zr2Be17 , 1959 .

[148]  J. Rich,et al.  The effects of heating neutron irradiated beryllium , 1959 .

[149]  R. F. Raeuchle,et al.  The structure of a new series of MBe12 compounds , 1957 .

[150]  R. F. Raeuchle,et al.  The structure of MoBe12 , 1955 .

[151]  D. H. Templeton,et al.  The crystal structures of CeB4 ThB4 and UB4 , 1953 .

[152]  E. J. Lewis Some Thermal and Electrical Properties of Beryllium , 1929 .

[153]  M. Nakamichi,et al.  Post irradiation characterization of beryllium and beryllides after high temperature irradiation up to 3000 appm helium production in HIDOBE-01 , 2016 .

[154]  Jae-Hwan Kim,et al.  Synthesis and reactivity of single-phase Be17Ti2 intermetallic compounds , 2016 .

[155]  H. Kawamura,et al.  Present status of beryllides for fusion and industrial applications in Japan , 2007 .

[156]  J. Delaplace,et al.  Etude des defauts crees dans le beryllium par ecrouissage a basse temperature , 1970 .

[157]  R. G. Bedford,et al.  The beryllides of Ti, V, Cr, Zr, Nb, Mo, Hf and Ta , 1961 .

[158]  R. E. Rundle,et al.  A correction and note on the structure of TiBe12 , 1953 .

[159]  T. Ueki,et al.  THE CRYSTAL STRUCTURE OF OSMIUM TETROXIDE , 1953 .

[160]  R. E. Rundle,et al.  The structure of TiBe12 , 1952 .