Cocatalyst effects in α-diimine nickel catalyzed ethylene polymerization

[1]  Changle Chen,et al.  A general strategy for heterogenizing olefin polymerization catalysts and the synthesis of polyolefins and composites , 2022, Nature Communications.

[2]  Changle Chen,et al.  An Ionic Cluster Strategy for Performance Improvements and Product Morphology Control in Metal-Catalyzed Olefin-Polar Monomer Copolymerization. , 2022, Journal of the American Chemical Society.

[3]  Zhisheng Fu,et al.  Improvement of Catalytic Activity for α ‐Diimine Nickel Complex with Active Sites Stabilized by Bulky Boron Counterions at Elevated Temperature , 2022, Applied Organometallic Chemistry.

[4]  Changle Chen,et al.  Promoting Ethylene (co)Polymerization in Aliphatic Hydrocar‐bon Solvents Using tert ‐Butyl Substituted Nickel Catalysts , 2021, Chinese Journal of Chemistry.

[5]  Changle Chen,et al.  Photoresponsive Palladium and Nickel Catalysts for Ethylene Polymerization and Copolymerization. , 2021, Angewandte Chemie.

[6]  Changle Chen,et al.  Positional Electronic Effects in Iminopyridine‐ N ‐oxide Nickel Catalyzed Ethylene Polymerization † , 2021 .

[7]  Xiaoqian Hu,et al.  Recent advances in nickel mediated copolymerization of olefin with polar monomers , 2021 .

[8]  Changle Chen,et al.  A disubstituted-norbornene-based comonomer strategy to address polar monomer problem. , 2021, Science bulletin.

[9]  N. Bhuvanesh,et al.  Highly Efficient Carborane-Based Activators for Molecular Olefin Polymerization Catalysts , 2021 .

[10]  T. Shiono,et al.  Neutral, Noncoordinating, and Hydrocarbon-Soluble Protic Cocatalyst for Olefin Polymerization , 2021 .

[11]  Yao-Liang Sun,et al.  Interplay of Supramolecular Chemistry and Photochemistry with Palladium-Catalyzed Ethylene Polymerization , 2020, CCS Chemistry.

[12]  S. Saha,et al.  Theoretical Elucidation of the Effect of Counteranions on the Olefin Polymerization Activity of (Pyridylamido)Hf(IV) Catalyst by QM and REMD Studies: MeB(C6F5)3– versus B(C6F5)4– , 2020, Organometallics.

[13]  Changle Chen,et al.  Nickel catalysts for the synthesis of ultra-high molecular weight polyethylene. , 2020, Science bulletin.

[14]  S. Mecking,et al.  Ultrahigh Branching of Main‐Chain‐Functionalized Polyethylenes by Inverted Insertion Selectivity , 2020, Angewandte Chemie.

[15]  Y. Chi,et al.  Influence of initiating groups on phosphino-phenolate nickel catalyzed ethylene (co)polymerization. , 2020, Dalton transactions.

[16]  T. Liang,et al.  A simple and versatile nickel platform for the generation of branched high molecular weight polyolefins , 2020, Nature Communications.

[17]  Changle Chen,et al.  Ligand–metal secondary interactions in phosphine–sulfonate palladium and nickel catalyzed ethylene (co)polymerization , 2020 .

[18]  Anne M. LaPointe,et al.  Switchable living nickel(ii) α-diimine catalyst for ethylene polymerisation. , 2019, Chemical communications.

[19]  Changle Chen,et al.  Emerging Palladium and Nickel Catalysts for Copolymerization of Olefins with Polar Monomers. , 2019, Angewandte Chemie.

[20]  T. Marks,et al.  Significant Polar Comonomer Enchainment in Zirconium-Catalyzed, Masking Reagent-Free, Ethylene Copolymerizations. , 2019, Angewandte Chemie.

[21]  P. Rablen,et al.  Atomic Charges. , 2018, The Journal of organic chemistry.

[22]  T. Liang,et al.  Position Makes the Difference: Electronic Effects in Nickel-Catalyzed Ethylene Polymerizations and Copolymerizations. , 2018, Inorganic chemistry.

[23]  Yue-sheng Li,et al.  Robust Bulky [P,O] Neutral Nickel Catalysts for Copolymerization of Ethylene with Polar Vinyl Monomers , 2018 .

[24]  Changle Chen Designing catalysts for olefin polymerization and copolymerization: beyond electronic and steric tuning , 2018, Nature Reviews Chemistry.

[25]  Changle Chen,et al.  Ethylene Polymerization and Copolymerization Using Nickel 2-Iminopyridine-N-oxide Catalysts: Modulation of Polymer Molecular Weights and Molecular-Weight Distributions , 2018 .

[26]  Qing Wu,et al.  Synthesis, characterization, and catalytic ethylene oligomerization of pyridine-imine palladium complexes , 2018, Chinese Journal of Polymer Science.

[27]  Changle Chen,et al.  Phosphine-sulfonate-based nickel catalysts: ethylene polymerization and copolymerization with polar-functionalized norbornenes , 2017 .

[28]  T. Shiono,et al.  Highly Robust Nickel Catalysts Containing Anilinonaphthoquinone Ligand for Copolymerization of Ethylene and Polar Monomers , 2017 .

[29]  Changle Chen,et al.  Manipulation of polymer branching density in phosphine-sulfonate palladium and nickel catalyzed ethylene polymerization , 2017 .

[30]  C. Landis,et al.  Mechanistic Studies of Hafnium-Pyridyl Amido-Catalyzed 1-Octene Polymerization and Chain Transfer Using Quench-Labeling Methods. , 2017, Journal of the American Chemical Society.

[31]  Y. Oishi,et al.  Nickel Catalyzed Copolymerization of Ethylene and Alkyl Acrylates. , 2017, Journal of the American Chemical Society.

[32]  Changle Chen,et al.  Rational Design of High-Performance Phosphine Sulfonate Nickel Catalysts for Ethylene Polymerization and Copolymerization with Polar Monomers , 2017 .

[33]  Changle Chen,et al.  Synthesis of high molecular weight polyethylene using iminopyridyl nickel catalysts. , 2016, Chemical communications.

[34]  K. Nozaki,et al.  Copolymerization of Ethylene and Polar Monomers by Using Ni/IzQO Catalysts. , 2016, Angewandte Chemie.

[35]  Rolf Mülhaupt,et al.  From Multisite Polymerization Catalysis to Sustainable Materials and All-Polyolefin Composites. , 2016, Chemical reviews.

[36]  Lihua Guo,et al.  Investigations of the Ligand Electronic Effects on α-Diimine Nickel(II) Catalyzed Ethylene Polymerization , 2016, Polymers.

[37]  Changle Chen,et al.  Highly Robust Palladium(II) α-Diimine Catalysts for Slow-Chain-Walking Polymerization of Ethylene and Copolymerization with Methyl Acrylate. , 2015, Angewandte Chemie.

[38]  W. Keim Oligomerization of ethylene to α-olefins: discovery and development of the shell higher olefin process (SHOP). , 2013, Angewandte Chemie.

[39]  B. Long,et al.  A robust Ni(II) α-diimine catalyst for high temperature ethylene polymerization. , 2013, Journal of the American Chemical Society.

[40]  E. T. Nadres,et al.  Synthesis of Highly Branched Polyethylene Using “Sandwich” (8-p-Tolyl naphthyl α-diimine)nickel(II) Catalysts , 2013 .

[41]  Yiwang Chen,et al.  Nickel(II) Complexes with Three-Dimensional Geometry α-Diimine Ligands: Synthesis and Catalytic Activity toward Copolymerization of Norbornene , 2013 .

[42]  T. Agapie,et al.  Bimetallic coordination insertion polymerization of unprotected polar monomers: copolymerization of amino olefins and ethylene by dinickel bisphenoxyiminato catalysts. , 2013, Journal of the American Chemical Society.

[43]  S. Lancaster,et al.  Weakly Coordinating Anions: Highly Fluorinated Borates , 2013 .

[44]  Fosong Wang,et al.  Ethylene polymerization by 2-iminopyridylnickel halide complexes: synthesis, characterization and catalytic influence of the benzhydryl group. , 2012, Dalton transactions.

[45]  Xiaoyuan Zhou,et al.  Enhancement of Chain Growth and Chain Transfer Rates in Ethylene Polymerization by (Phosphine-sulfonate)PdMe Catalysts by Binding of B(C6F5)3 to the Sulfonate Group , 2012 .

[46]  Wen‐Hua Sun,et al.  Synthesis, Characterization, and Ethylene Polymerization Behavior of 8-(Nitroarylamino)-5,6,7-trihydroquinolylnickel Dichlorides: Influence of the Nitro Group and Impurities on Catalytic Activity , 2011 .

[47]  K. Nozaki,et al.  Erratum: Synthesis of allylnickel complexes with phosphine sulfonate ligands and their application for olefin polymerization without activators (Organometallics (2009) 28 (656) DOI:10.1021/om800781b)) , 2009 .

[48]  S. Mecking,et al.  Control of molecular weight in Ni(II)-catalyzed polymerization via the reaction medium. , 2008, Chemical communications.

[49]  E. Álvarez,et al.  Nickel 2-Iminopyridine N-Oxide (PymNox) Complexes: Cationic Counterparts of Salicylaldiminate-Based Neutral Ethylene Polymerization Catalysts , 2008 .

[50]  G. Coates,et al.  Polymerization of α-Olefins with Pyridylamidohafnium Catalysts: Living Behavior and Unexpected Isoselectivity from a Cs-Symmetric Catalyst Precursor , 2007 .

[51]  A. Macchioni,et al.  Synthesis, Ion Aggregation, Alkyl Bonding Modes, and Dynamics of 14-Electron Metallocenium Ion Pairs [(SBI)MCH2SiMe3+···X-] (M = Zr, Hf): Inner-Sphere (X = MeB(C6F5)3) versus Outer-Sphere (X = B(C6F5)4) Structures and the Implications for “Continuous” or “Intermittent” Alkene Polymerization Mechanis , 2005 .

[52]  M. Bochmann Kinetic and mechanistic aspects of metallocene polymerisation catalysts , 2004 .

[53]  W. Kaminsky,et al.  The discovery of metallocene catalysts and their present state of the art , 2004 .

[54]  I. Krossing,et al.  Noncoordinating anions--fact or fiction? A survey of likely candidates. , 2004, Angewandte Chemie.

[55]  F. Matthias Bickelhaupt,et al.  Voronoi deformation density (VDD) charges: Assessment of the Mulliken, Bader, Hirshfeld, Weinhold, and VDD methods for charge analysis , 2004, J. Comput. Chem..

[56]  G. Wilke Fifty years of Ziegler catalysts: consequences and development of an invention. , 2003, Angewandte Chemie.

[57]  H. Yun,et al.  [2-(alkylideneamino)benzoato]nickel(II) complexes: Active catalysts for ethylene polymerization , 2003 .

[58]  T. Marks,et al.  Catalyst/cocatalyst nuclearity effects in single-site olefin polymerization. Significantly enhanced 1-octene and isobutene comonomer enchainment in ethylene polymerizations mediated by binuclear catalysts and cocatalysts. , 2003, Journal of the American Chemical Society.

[59]  G. Bazan,et al.  α-Iminocarboxamidato−Nickel(II) Ethylene Polymerization Catalysts , 2001 .

[60]  T. Marks,et al.  Metal-Alkyl Group Effects on the Thermodynamic Stability and Stereochemical Mobility of B(C6F5)3-Derived Zr and Hf Metallocenium Ion-Pairs , 2000 .

[61]  K. A. Ostoja Starzewski Scope of Olefin Polymerization Nickel Catalysts , 2000, Science.

[62]  T. Marks,et al.  Organo-Lewis Acid Cocatalysts in Single-Site Olefin Polymerization—A Highly Acidic Perfluorodiboraanthracene , 2000 .

[63]  T. Marks,et al.  Cocatalysts for metal-catalyzed olefin polymerization: activators, activation processes, and structure-activity relationships. , 2000, Chemical reviews.

[64]  G. Bazan,et al.  Synthesis of Butene−Ethylene and Hexene−Butene−Ethylene Copolymers from Ethylene via Tandem Action of Well-Defined Homogeneous Catalysts , 2000 .

[65]  M. Leskelä,et al.  Polymerization of ethylene with new diimine complexes of late transition metals , 1999 .

[66]  T. Marks,et al.  Sterically encumbered (perfluoroaryl) borane and aluminate cocatalysts for tuning cation - Anion ion pair structure and reactivity in metallocene polymerization processes. A synthetic, structural, and polymerization study , 1998 .

[67]  T. Marks,et al.  Very large counteranion modulation of cationic metallocene polymerization activity and stereoregulation by a sterically congested (perfluoroaryl)fluoroaluminate , 1997 .

[68]  L. Jia,et al.  Cationic Metallocene Polymerization Catalysts Based on Tetrakis(pentafluorophenyl)borate and Its Derivatives. Probing the Limits of Anion “Noncoordination” via a Synthetic, Solution Dynamic, Structural, and Catalytic Olefin Polymerization Study , 1997 .

[69]  T. Asanuma,et al.  Inversion of stereoselectivity in a metallocene catalyst , 1996 .

[70]  R. Fröhlich,et al.  Reaction of (Butadiene)zirconocene with Tris(pentafluorophenyl)borane—A Novel Way of Generating Methylalumoxane-Free Homogeneous Ziegler-Type Catalysts† , 1995 .

[71]  Maurice Brookhart,et al.  New Pd(II)- and Ni(II)-Based Catalysts for Polymerization of Ethylene and .alpha.-Olefins , 1995 .

[72]  T. Marks,et al.  Chiral C1-Symmetric Group 4 Metallocenes as Catalysts for Stereoregular .alpha.-Olefin Polymerization. Metal, Ancillary Ligand, and Counteranion Effects , 1995 .

[73]  J. Chien,et al.  Effect of counterion structure on zirconocenium catalysis of olefin polymerization , 1993 .