Forest mapping by geoinformatics for landscape fire behaviour modelling in coastal forests, Greece

This study aims at quantifying and mapping fire-related characteristics of forest structure through field inventories, statistics, remote sensing, and geographical information systems in the island of Lesvos, northeast Aegean Sea, Greece. Simulation of fire behaviour requires forest biomass inputs that describe surface fuel types/models along with canopy fuel properties, such as canopy cover, stand height, crown base height, and crown bulk density, to accurately predict surface and crown fire spread and spotting potential. Forest canopy characteristics and other vegetation attributes were sampled and derived in over 100 field plots, the majority of which were located in coastal pine forest stands. Regression models involving four dependent forest stand variables (stand height, canopy cover, crown base height, and crown bulk density) were developed using generalized additive models. The values of adjusted R 2 were 0.72 for stand height, 0.68 for canopy cover, 0.51 for crown base height, and 0.33 for crown bulk density. These regression models were used to create forest fuel characteristics layers, which can be used as inputs to fire management applications and state-of-the-art landscape-scale fire behaviour models.

[1]  R. Tibshirani,et al.  Generalized Additive Models , 1986 .

[2]  Christine Stone,et al.  Assessing canopy health of native eucalypt forests , 2006 .

[3]  Richard D. Stratton Guidebook on LANDFIRE fuels data acquisition, critique, modification, maintenance, and model calibration , 2009 .

[4]  H. Mannheimer The LANDSAT program , 1977 .

[5]  Frank,et al.  Potential Spotting Distance from Wind-Driven Surface Fires , 2008 .

[6]  Robert West,et al.  Generalised Additive Models , 2012 .

[7]  Ruiliang Pu,et al.  Crown closure estimation of oak savannah in a dry season with Landsat TM imagery: Comparison of various indices through correlation analysis , 2003 .

[8]  Lara A. Arroyo,et al.  Fire models and methods to map fuel types: The role of remote sensing , 2008 .

[9]  Jan W. van Wagtendonk,et al.  The use of multi-temporal Landsat Normalized Difference Vegetation Index (NDVI) data for mapping fuel models in Yosemite National Park, USA , 2003 .

[10]  Galina A. Kuryakova,et al.  Influence of topography on some vegetation cover properties , 1996 .

[11]  Charles H. Wick,et al.  A method of evaluating crown fuels in forest stands. , 1972 .

[12]  Patricia L. Andrews BehavePlus fire modeling system, version 5.0: Variables , 2009 .

[13]  S. Ustin,et al.  Modeling airborne laser scanning data for the spatial generation of critical forest parameters in fire behavior modeling , 2003 .

[14]  H. Anderson Aids to Determining Fuel Models for Estimating Fire Behavior , 1982 .

[15]  P. Howarth,et al.  Time-Series Analysis of Medium-Resolution, Multisensor Satellite Data for Identifying Landscape Change , 2006 .

[16]  R. Keane,et al.  Mapping vegetation and fuels for fire management on the Gila National Forest Complex, New Mexico , 2000 .

[17]  G. Xanthopoulos,et al.  Allometric equations for aboveground biomass estimation by size class for Pinus brutia Ten. trees growing in North and South Aegean Islands, Greece , 2011, European Journal of Forest Research.

[18]  C. E. Van Wagner,et al.  Prediction of crown fire behavior in two stands of jack pine , 1993 .

[19]  J. Heiskanen Tree cover and height estimation in the Fennoscandian tundra-taiga transition zone using multiangular MISR data , 2006 .

[20]  Paul E. Gessler,et al.  Characterizing and mapping forest fire fuels using ASTER imagery and gradient modeling , 2005 .

[21]  R. Rothermel,et al.  Modeling moisture content of fine dead wildland fuels input into the BEHAVE fire prediction system , 1986 .

[22]  Joe H. Scott,et al.  Assessing Crown Fire Potential by Linking Models of Surface and Crown Fire Behavior , 2003 .

[23]  Kostas Kalabokidis,et al.  Identifying wildland fire ignition factors through sensitivity analysis of a neural network , 2009 .

[24]  M. Alrababah,et al.  Estimating east Mediterranean forest parameters using Landsat ETM , 2011 .

[25]  Nikos Koutsias,et al.  Multivariate analysis of landscape wildfire dynamics in a Mediterranean ecosystem of Greece , 2007 .

[26]  Kostas Kalabokidis,et al.  Fire and Society: A Comparative Analysis of Wildfire in Greece and the United States , 2005 .

[27]  M. Finney FARSITE : Fire Area Simulator : model development and evaluation , 1998 .

[28]  H. O. Batzer Aspen: symposium proceedings. General-Technical-Report,-USDA-Forest-Service,-North-Central-Forest-Experiment-Station , 1972 .

[29]  B. Markham,et al.  Revised Landsat-5 TM radiometric calibration procedures and postcalibration dynamic ranges , 2003, IEEE Trans. Geosci. Remote. Sens..

[30]  Kostas Kalabokidis,et al.  Integrating new methods and tools in fire danger rating , 2007 .

[31]  N. Silleos,et al.  Vegetation Indices: Advances Made in Biomass Estimation and Vegetation Monitoring in the Last 30 Years , 2006 .

[32]  Nikos Koutsias,et al.  Classification analyses of vegetation for delineating forest fire fuel complexes in a Mediterranean test site using satellite remote sensing and GIS , 2003 .

[33]  J. A. Schell,et al.  Monitoring vegetation systems in the great plains with ERTS , 1973 .

[34]  Zhengwei Yang,et al.  IMPACT OF BAND-RATIO ENHANCED AWIFS IMAGE TO CROP CLASSIFICATION ACCURACY , 2008 .

[35]  Philip N. Omi,et al.  Fire, fuel treatments, and ecological restoration: Conference proceedings; 2002 16-2018 April; Fort Collins, CO , 2003 .

[36]  Ioannis Z. Gitas,et al.  Development of an IKONOS image classification rule-set for multi-scale mapping of Mediterranean rural landscapes , 2011 .

[37]  Costas Kosmas,et al.  The effect of land parameters on vegetation performance and degree of erosion under Mediterranean conditions , 2000 .

[38]  Alan Y. Chiang,et al.  Generalized Additive Models: An Introduction With R , 2007, Technometrics.

[39]  A. Dimitrakopoulos Mediterranean fuel models and potential fire behaviour in Greece. , 2002 .

[40]  Y. Hu,et al.  Mapping the height and above‐ground biomass of a mixed forest using lidar and stereo Ikonos images , 2008 .

[41]  John A. Gamon,et al.  Assessing leaf pigment content and activity with a reflectometer , 1999 .

[42]  K. Kalabokidis,et al.  Quadrat Analysis of Wildland Fuel Spatial Variability , 1992 .

[43]  J. L. Parra,et al.  Very high resolution interpolated climate surfaces for global land areas , 2005 .

[44]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[45]  Daniel C. Dunn,et al.  Marine Geospatial Ecology Tools: An integrated framework for ecological geoprocessing with ArcGIS, Python, R, MATLAB, and C++ , 2010, Environ. Model. Softw..

[46]  D. Pollard Above-ground dry matter production in three stands of Trembling Aspen , 1972 .

[47]  Kostas Kalabokidis,et al.  Wind characteristics and mapping for power production in the Island of Lesvos, Greece , 2011, Comput. Geosci..

[48]  S. Wood Thin plate regression splines , 2003 .

[49]  R. Curtis,et al.  Technical Note: Why Quadratic Mean Diameter? , 2000 .

[50]  B. Morehouse,et al.  Wildland Fire Governance: Perspectives from Greece , 2011 .

[51]  James K. Brown Weight and density of crowns of Rocky Mountain conifers , 1978 .

[52]  S. Wood,et al.  GAMs with integrated model selection using penalized regression splines and applications to environmental modelling , 2002 .

[53]  James K. Brown Handbook for inventorying downed woody material , 1974 .

[54]  Anthony Lehmann,et al.  GRASP: generalized regression analysis and spatial prediction , 2002 .

[55]  Dengsheng Lu,et al.  Assessment of atmospheric correction methods for Landsat TM data applicable to Amazon basin LBA research , 2002 .

[56]  B. L. Baker,et al.  Regional vegetation mapping in Australia: a case study in the practical use of statistical modelling , 2002, Biodiversity & Conservation.

[57]  Andre Zerger,et al.  A method for predicting native vegetation condition at regional scales , 2009 .

[58]  R. Hall,et al.  Discrimination of conifer height, age and crown closure classes using Landsat-5 TM imagery in the Canadian Northwest Territories , 2003 .

[59]  Miguel G. Cruz,et al.  Assessing canopy fuel stratum characteristics in crown fire prone fuel types of western North America , 2003 .

[60]  R. Keane,et al.  Mapping wildland fuels for fire management across multiple scales: Integrating remote sensing, GIS, and biophysical modeling , 2001 .

[61]  R. A. Evans,et al.  The Step-Point Method of Sampling-A Practical Tool in Range Research. , 1957 .

[62]  P. Chavez Image-Based Atmospheric Corrections - Revisited and Improved , 1996 .

[63]  X. Lee,et al.  Introduction to wildland fire , 1997 .

[64]  Joe H. Scott,et al.  Standard Fire Behavior Fuel Models: A Comprehensive Set for Use with Rothermel?s Surface Fire Spread Model , 2015 .

[65]  Lars Landberg,et al.  The wind atlas analysis and application program , 1994 .

[66]  Kostas Kalabokidis,et al.  Wildfire policy and use of science in the context of a socio-ecological system on the Aegean Archipelago , 2008 .

[67]  Thomas Alexandridis,et al.  An estimation of the optimum temporal resolution for monitoring vegetation condition on a nationwide scale using MODIS/Terra data , 2008 .

[68]  T. Plieninger,et al.  Land-use legacies in the forest structure of silvopastoral oak woodlands in the Eastern Mediterranean , 2011 .

[69]  Patricia L. Andrews,et al.  Fuels Management-How to Measure Success: Conference Proceedings , 2006 .

[70]  C. E. Van Wagner,et al.  Conditions for the start and spread of crown fire , 1977 .