Parker Winds Revisited: An Extension to Disk Winds

A simple 1D dynamical model of thermally driven disc winds is proposed, based on the results of recent, 2.5D axi-symmetric simulations. Our formulation of the disc wind problem is in the spirit of the original Parker (1958) and Bondi (1952) problems, namely we assume an elementary flow configuration consisting of an outflow following pre-defined trajectories in the presence of a central gravitating point mass. Viscosity and heat conduction are neglected. We consider two different streamline geometries, both comprised of straight lines in the (x,z)-plane: (i) streamlines that converge to a geometric point located at (x,z)=(0,-d) and (ii) streamlines that emerge at a constant inclination angle from the disc midplane (the x-axis, as we consider geometrically thin accretion discs). The former geometry is commonly used in kinematic models to compute synthetic spectra, while the latter, which exhibits self-similarity, is likely unused for this purpose, although it easily can be with existing kinematic models. We make the case that it should be, i.e. that geometry (ii) leads to transonic wind solutions with substantially different properties owing to its lack of streamline divergence. Both geometries can be used to complement recent efforts to estimate photoevaporative mass loss rates from protoplanetary discs. Pertinent to understanding our disc wind results, which are also applicable to X-ray binaries and active galactic nuclei, is a focused discussion on lesser known properties of classic Parker wind solutions. We find that the parameter space corresponding to decelerating Parker wind solutions is made larger due to rotation and leads instead to disc wind solutions that always accelerate after the bulk velocity is slowed to a minimum value. Surprisingly, Keplerian rotation may allow for two different transonic wind solutions for the same physical conditions.

[1]  J. Owen,et al.  Planetary evaporation by UV and X‐ray radiation: basic hydrodynamics , 2012, 1206.2367.

[2]  B. Ercolano,et al.  On the theory of disc photoevaporation , 2011, 1112.1087.

[3]  R. E. Johnson,et al.  Thermally driven escape from Pluto’s atmosphere: A combined fluid/kinetic model , 2011, 1111.2808.

[4]  L. Tambovtseva,et al.  Disk wind in the radiation of young intermediate-mass stars , 2011 .

[5]  Tim J. Harries,et al.  Multidimensional models of hydrogen and helium emission line profiles for classical T Tauri stars: method, tests and examples , 2011, 1102.0828.

[6]  Philip J. Armitage,et al.  Dynamics of Protoplanetary Disks , 2010, 1011.1496.

[7]  L. Ofman Wave Modeling of the Solar Wind , 2010, Living reviews in solar physics.

[8]  U. M. Noebauer,et al.  THE GEOMETRY AND IONIZATION STRUCTURE OF THE WIND IN THE ECLIPSING NOVA-LIKE VARIABLES RW TRI AND UX UMa , 2010, 1007.0209.

[9]  E. Ostriker,et al.  THE ATHENA ASTROPHYSICAL MAGNETOHYDRODYNAMICS CODE IN CYLINDRICAL GEOMETRY , 2010, 1004.2487.

[10]  R. Salmeron,et al.  The Effects of Large-Scale Magnetic Fields on Disk Formation and Evolution , 2010, 1004.1875.

[11]  U. Michigan,et al.  ON THE PROPERTIES OF THERMAL DISK WINDS IN X-RAY TRANSIENT SOURCES: A CASE STUDY OF GRO J1655−40 , 2010, The Astrophysical Journal.

[12]  B. Ercolano,et al.  X-RAY IRRADIATED PROTOPLANETARY DISK ATMOSPHERES. II. PREDICTIONS FROM MODELS IN HYDROSTATIC EQUILIBRIUM , 2009, 0905.1001.

[13]  J. Stone,et al.  ANISOTROPIC WINDS FROM CLOSE-IN EXTRASOLAR PLANETS , 2008, The Astrophysical Journal.

[14]  U. Gorti,et al.  PHOTOEVAPORATION OF CIRCUMSTELLAR DISKS BY FAR-ULTRAVIOLET, EXTREME-ULTRAVIOLET AND X-RAY RADIATION FROM THE CENTRAL STAR , 2008, 0809.1494.

[15]  Maryland,et al.  Multidimensional modelling of X-ray spectra for AGN accretion disc outflows , 2008, 1006.3449.

[16]  U. Gorti,et al.  Line Emission from Gas in Optically Thick Dust Disks around Young Stars , 2008, 0804.3381.

[17]  L. Ho,et al.  The Central Engine of Active Galactic Nuclei , 2007 .

[18]  B. Metzger,et al.  On the Conditions for Neutron-rich Gamma-Ray Burst Outflows , 2007, 0708.3395.

[19]  A. Muñoz,et al.  Physical and chemical aeronomy of HD 209458b , 2007 .

[20]  O. Blaes,et al.  Thermodynamics of an Accretion Disk Annulus with Comparable Radiation and Gas Pressure , 2007, 0705.0305.

[21]  O. Blaes,et al.  Surface Structure in an Accretion Disk Annulus with Comparable Radiation and Gas Pressure , 2007, 0705.0314.

[22]  M. Velli,et al.  A Semiempirical Magnetohydrodynamical Model of the Solar Wind , 2007 .

[23]  D. Proga Theory of winds in AGNs , 2007, astro-ph/0701100.

[24]  N. Murray,et al.  Large-Scale Parker Winds in Active Galactic Nuclei , 2006, astro-ph/0610757.

[25]  C. Clarke,et al.  Photoevaporation of protoplanetary discs – I. Hydrodynamic models , 2006, astro-ph/0603253.

[26]  J. Krolik,et al.  Vertical Structure of Gas Pressure-dominated Accretion Disks with Local Dissipation of Turbulence and Radiative Transport , 2005, astro-ph/0510741.

[27]  S. S. Institute,et al.  Two-dimensional Monte Carlo simulations of H i line formation in massive young stellar object disc winds , 2005, astro-ph/0508103.

[28]  H. De Sterck,et al.  Transonic Hydrodynamic Escape of Hydrogen from Extrasolar Planetary Atmospheres , 2005 .

[29]  Apc,et al.  Relativistic Parker winds with variable effective polytropic index , 2004, astro-ph/0407100.

[30]  M. Cur'e The Influence of Rotation in Radiation-driven Wind from Hot Stars: New Solutions and Disk Formation in Be Stars , 2004, astro-ph/0406490.

[31]  S. Cranmer New views of the solar wind with the Lambert W function , 2004, astro-ph/0406176.

[32]  U. Gorti,et al.  Photoevaporation of Circumstellar Disks Due to External Far-Ultraviolet Radiation in Stellar Aggregates , 2004, astro-ph/0404383.

[33]  D. Johnstone,et al.  Photoevaporation of Circumstellar Disks around Young Stars , 2004, astro-ph/0402241.

[34]  M. Velli,et al.  A Three-dimensional Model of the Solar Wind Incorporating Solar Magnetogram Observations , 2003 .

[35]  W. Press,et al.  Numerical Recipes in C++: The Art of Scientific Computing (2nd edn)1 Numerical Recipes Example Book (C++) (2nd edn)2 Numerical Recipes Multi-Language Code CD ROM with LINUX or UNIX Single-Screen License Revised Version3 , 2003 .

[36]  Roger V. Yelle,et al.  Aeronomy of extra-solar giant planets at small orbital distances , 2003 .

[37]  J. Krolik,et al.  Local Three-dimensional Simulations of Magnetorotational Instability in Radiation-dominated Accretion Disks , 2003, astro-ph/0304511.

[38]  Boulder,et al.  Accretion of Low Angular Momentum Material onto Black Holes: Two-dimensional Magnetohydrodynamic Case , 2003, astro-ph/0303093.

[39]  Greenbelt,et al.  On the Role of the Ultraviolet and X-Ray Radiation in Driving a Disk Wind in X-Ray Binaries , 2001, Astrophysical Journal.

[40]  M. Velli Hydrodynamics of the Solar Wind Expansion , 2001 .

[41]  Robert M Corless,et al.  Some applications of the Lambert W  function to physics , 2000, Canadian Journal of Physics.

[42]  J. M. Stone,et al.  The Formation and Structure of a Strongly Magnetized Corona above a Weakly Magnetized Accretion Disk , 1999, astro-ph/9912135.

[43]  J. Cassinelli,et al.  Introduction to Stellar Winds by Henny J. G. L. M. Lamers , 1999 .

[44]  J. Cassinelli,et al.  Introduction to Stellar Winds , 1999 .

[45]  I. Shlosman,et al.  Dynamics of Line-driven Winds from Disks in Cataclysmic Variables. II. Mass-Loss Rates and Velocity Laws , 1999, astro-ph/9902149.

[46]  I. Shlosman,et al.  Dynamics of Line-driven Winds from Disks in Cataclysmic Variables. I. Solution Topology and Wind Geometry , 1999, astro-ph/9902150.

[47]  J. P. Goedbloed,et al.  Numerical simulations of stellar winds: polytropic models , 1999, astro-ph/9901380.

[48]  Roger D. Blandford,et al.  On the fate of gas accreting at a low rate on to a black hole , 1998, astro-ph/9809083.

[49]  J. Bally,et al.  Photoevaporation of Disks and Clumps by Nearby Massive Stars: Application to Disk Destruction in the Orion Nebula , 1998 .

[50]  Thomas E. Cravens,et al.  Physics of Solar System Plasmas , 1998 .

[51]  K. Tsinganos,et al.  On the relation of limiting characteristics to critical surfaces in magnetohydrodynamic flows , 1996 .

[52]  J. Bell,et al.  X-ray-heated coronae and winds from accretion disks: Time-dependent two-dimensional hydrodynamics with adaptive mesh refinement , 1996 .

[53]  J. Drew,et al.  The application of Monte Carlo methods to the synthesis of spectral line profiles arising from accretion disc winds , 1995 .

[54]  M. Velli From Supersonic Winds to Accretion: Comments on the Stability of Stellar Winds and Related Flows , 1994 .

[55]  Frank H. Shu,et al.  Photoevaporation of Disks around Massive Stars and Application to Ultracompact H II Regions , 1994 .

[56]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[57]  D. Johnstone,et al.  Photoevaporation of the Solar Nebula and the Formation of the Giant Planets , 1993 .

[58]  I. Shlosman,et al.  Winds from accretion disks - Ultraviolet line formation in cataclysmic variables , 1993 .

[59]  E. Ostriker,et al.  Isothermal, Compton-heated Coronae above Accretion Disks , 1991 .

[60]  Sandip K. Chakrabarti,et al.  Theory of Transonic Astrophysical Flows , 1990 .

[61]  D. Hunten Kuiper prize lecture: Escape of atmospheres, ancient and modern☆ , 1990 .

[62]  J. Fukue,et al.  Hydrodynamical winds from an accretion disk. , 1990 .

[63]  R. Rosner,et al.  Winds from Hot Accretion Disks , 1989 .

[64]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[65]  J. Fukue Hydrodynamical Winds from a Geometrically Thin Disk , 1989 .

[66]  John C. Raymond,et al.  IUE observations of the dwarf nova HL Canis Majoris and the winds of cataclysmic variables , 1987 .

[67]  J. Drew Inclination and orbital-phase-dependent resonance line-profile calculations applied to cataclysmic variable winds , 1987 .

[68]  D. Lin,et al.  Compton-heated winds and coronae above accretion disks. II - Instability and oscillations , 1986 .

[69]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[70]  K. Mason,et al.  High-velocity winds in close binaries with accretion disks. II. The view along the plane of the disk. , 1985 .

[71]  J. Drew,et al.  Investigation of a wind model for cataclysmic variable ultraviolet resonance line emission , 1985 .

[72]  C. McKee,et al.  Compton heated winds and coronae above accretion disks. I. Dynamics , 1983 .

[73]  J. Kasting,et al.  Loss of Water from Venus. I. Hydrodynamic Escape of Hydrogen , 1983 .

[74]  D. Hunten Thermal and nonthermal escape mechanisms for terrestrial bodies , 1982 .

[75]  A. Watson,et al.  The dynamics of a rapidly escaping atmosphere: Applications to the evolution of Earth and Venus , 1981 .

[76]  J. Krolik,et al.  Two-phase models of quasar emission line regions , 1981 .

[77]  T. Holzer,et al.  Constraints on the solar coronal temperature in regions of open magnetic field , 1979 .

[78]  B. Berger,et al.  A model for winds from galactic disks , 1978 .

[79]  S. Gross Evolutionary Aspects of the Atmospheres of Titan and the Galilean Satellites , 1974 .

[80]  D. Hunten The Escape of Light Gases from Planetary Atmospheres , 1973 .

[81]  S. Rasool Loss of Water from Venus , 1968 .

[82]  L. Davis,et al.  The angular momentum of the solar wind. , 1967 .

[83]  E. Parker Dynamical theory of the solar wind , 1965 .

[84]  J. King,et al.  ON THE SOLUTIONS OF PARKER'S HYDRODYNAMIC THEORY OF SOLAR AND STELLAR WINDS , 1965 .

[85]  E. Dahlberg ON THE STELLAR-WIND EQUATIONS , 1964 .

[86]  J. W. Chamberlain,et al.  PLANETARY CORONAE AND ATMOSPHERIC EVAPORATION , 1963 .

[87]  J. W. Chamberlain Interplanetary Gas. III. a Hydrodynamic Model of the Corona. , 1961 .

[88]  E. Parker The Hydrodynamic Theory of Solar Corpuscular Radiation and Stellar Winds. , 1960 .

[89]  E. Parker Dynamics of the Interplanetary Gas and Magnetic Fields , 1958 .

[90]  H. Bondi,et al.  On spherically symmetrical accretion , 1952 .

[91]  R. Murray-Clay Consequences of planetary migration: Kuiper belt dynamics and atmospheric escape from hot Jupiters , 2008 .

[92]  H. Völk,et al.  Simple Model of the Outflow from Starburst Galaxies: Application to Radio Observations , 2006 .

[93]  D. Biskamp,et al.  Magnetohydrodynamic Turbulence , 2003 .

[94]  William H. Press,et al.  Numerical recipes in C , 2002 .

[95]  D. Hollenbach,et al.  Dispersal of Disks Around Young Stars: Constraints on Kuiper Belt Formation , 2002 .

[96]  J. P. Goedbloed,et al.  Numerical Simulations of Stellar Winds , 1999 .

[97]  D. Hollenbach Disk Dispersal Around Young Stars , 1999 .

[98]  Mark S. Giampapa,et al.  Cosmic Winds and the Heliosphere , 1997 .

[99]  J. Hawley,et al.  Instability, turbulence, and enhanced transport in accretion disks , 1997 .

[100]  K. Tsinganos The acceleration of the nonspherically symmetric solar wind and the Solar Probe , 1996 .

[101]  T. Theuns,et al.  Spherically symmetric, polytropic flow , 1992 .

[102]  John I. Castor,et al.  Radiation-driven winds in Of stars. , 1975 .

[103]  W. Axford,et al.  The Theory of Stellar Winds and Related Flows , 1970 .

[104]  John C. Brandt,et al.  Introduction to the solar wind , 1970 .

[105]  R. P. Kraft,et al.  STUDIES OF STELLAR ROTATION. V. THE DEPENDENCE OF ROTATION ON AGE AMONG SOLAR-TYPE STARS. , 1967 .

[106]  R. E. Marshak,et al.  Interplanetary Dynamical Processes , 1963 .

[107]  H. Zirin,et al.  Notes on the solar corona and the terrestrial ionosphere , 1957 .